

Lecture Notes in Computer Science 4044
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Pekka Abrahamsson Michele Marchesi
Giancarlo Succi (Eds.)

Extreme Programming
and Agile Processes
in Software Engineering

7th International Conference, XP 2006
Oulu, Finland, June 17-22, 2006
Proceedings

13

Volume Editors

Pekka Abrahamsson
VTT Technical Research Centre of Finland
Kaitoväylä 1, 90571 Oulu, Finland
E-mail: pekka.abrahamsson@vtt.fi

Michele Marchesi
University of Cagliari
DIEE, Department of Electrical and Electronic Engineering
Piazza d’Armi, 09123 Cagliari, Italy
E-mail: michele@diee.unica.it

Giancarlo Succi
Free University of Bozen/Bolzano
Center for Applied Software Engineering
Piazza Domenicani 3, 39100 Bozen/Bolzano, Italy
E-mail: Giancarlo.Succi@unibz.it

Library of Congress Control Number: 2006926928

CR Subject Classification (1998): D.2, D.1, D.3, K.6.3, K.6, K.4.3, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-35094-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35094-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11774129 06/3142 5 4 3 2 1 0

Preface

Unbelievable, we have reached the seventh edition of the XP2k+n conference! We
started at the outset of the new millennium, and we are still proving that agile proc-
esses were neither a millennium bug nor a YAF (yet another fad).

In its first editions, this conference was a get-together of a few pioneers who de-
bated about how to make agile processes and methods accepted by the mainstream
researchers and practitioners in software engineering. Now agile approach to software
development has been fully accepted by the software engineering community and this
event has become the major forum for understanding better the implications of agility
in software development and proposing extensions to the mainstream approaches.

These two aspects were fully reflected in this year’s conference. They were re-
flected in the keynote speeches, which covered the background work done starting as
early as the early eighties by Barry Boehm, definition of the field by Kent Beck, a
successful industrial application in a success story by Sean Hanly, the perspective and
the future of agile methods in large corporations by Jack Järkvik, and even some in-
sightful views from a philosopher, Pekka Himanen.

They were reflected in the technical sessions and in their papers, spanning from the
definition and the consolidation of the theory (with specific attention to topics like
pair programming, quality, experimental data) and reaching controversial areas, such
as distributed agile development and new practices involving usability and security
issues

The papers went through a rigorous reviewing process. Each paper was reviewed
by at least three Program Committee members. Of 59 papers submitted, only 16 were
accepted as full papers.

Panels, workshops, activities, and tutorials enriched the conference, introducing a
wide variety of topics and of discussion techniques.

But the highest value of any conference, and especially of a XP2k+n conferences is
in the people who attend it, this is why we think that this seventh edition of the confer-
ence was unique: because of its wide variety of ingenious, curious, dynamic, and nice
participants.

We thank all who contributed to the XP 2006 event. The authors, sponsors, the
chairs, the reviewers, and all the volunteers: without their help, this event would not
have been possible.

April 2006 Pekka Abrahamsson

Michele Marchesi
Giancarlo Succi

Organization

 VTT Technical Research Centre of Finland

University of Oulu

Executive and Program Committee

General Chair: Steven Fraser (QUALCOMM®, USA)
Program Chair: Pekka Abrahamsson (VTT, Finland)
Organizing Chair: Päivi Jaring, Finland
Organizing Co-chair: Kari Liukkunen, Finland
PhD Chair: Paul Gruenbacher, Austria
Panel Chair: Prof. Brian Fitzgerald, Ireland
Workshop Chair: Giancarlo Succi, Italy
Tutorial Co-chairs: Michele Marchesi, Italy
 Tua Huomo, Finland
Poster Co-chairs: David Hussman, USA
 Daniel Karlström, Sweden
Open-Space Chair: Charlie Poole, USA
Service Chair: Mike Hill, USA

Scientific Committee

Marco Abis, Italy
Pär Åkerfalk, Ireland
Mustafa Ally, Australia
Scott Ambler, Canada
Emily Bache, Sweden
Geoff Bache, Sweden
Ralf Back, Finland

Hubert Baumeister, Germany
Stefan Biffl, Austria
Laurent Bossavit, France
Anna Börjersson, Sweden
Ko Dooms, Netherlands
Yael Dubinsky, Israel
Tore Dybå, Norway

 Organization VIII

Jutta Eckstein, Germany
Hakan Erdogmus, Canada
John Favaro, Italy
Steve Freeman, UK
Jim Highsmith, USA
Mike Hill, USA
Mike Holcombe, UK
Helena Holmström, Ireland
David Hussman, USA
Tuomas Ihme, Finland
Ron Jeffries, USA
Nicolai Josuttis, Germany
Daniel Kallström, Sweden
Conboy Kieran, Ireland
Kai Koskimies, Finland
Tuomo Kähkönen, Finland

Martin Lippert, Germany
Markku Oivo, Finland
Frank Maurer, Canada
Grigori Melnik, Canada
Rick Mugridge, New Zealand
Paul Grünbacher, Austria
Barbara Russo, Italy
Outi Salo, Finland
Pinna Sandro, Italy
Helen Sharp, UK
Alberto Sillitti, Italy
Christoph Steindl, Austria
Ciancarlo Succi, Italy
Don Wells, USA
Laurie Williams, USA

Sponsors (as of April 13, 2006)

Platinium level (Main sponsor)

Exoftware™
(http://www.exoftware.com/)

Gold level

Silver level

Partners: F-Secure Oyj, Elbit ltd.

Table of Contents

Foundation and Rationale for Agile Methods

A Distributed Cognition Account of Mature XP Teams
Helen Sharp, Hugh Robinson . 1

Foundations of Agile Decision Making from Agile Mentors
and Developers

Carmen Zannier, Frank Maurer . 11

Software Development as a Collaborative Writing Project
Brian Bussell, Stephen Taylor . 21

Comparative Analysis of Job Satisfaction in Agile and Non-agile
Software Development Teams

Grigori Melnik, Frank Maurer . 32

Effects of Pair Programming

Investigating the Impact of Personality Types on Communication
and Collaboration-Viability in Pair Programming – An Empirical Study

Panagiotis Sfetsos, Ioannis Stamelos, Lefteris Angelis,
Ignatios Deligiannis . 43

The Collaborative Nature of Pair Programming
Sallyann Bryant, Pablo Romero, Benedict du Boulay 53

Is External Code Quality Correlated with Programming Experience
or Feelgood Factor?

Lech Madeyski . 65

Quality in Agile Software Development

Leveraging Code Smell Detection with Inter-smell Relations
B�lażej Pietrzak, Bartosz Walter . 75

Studying the Evolution of Quality Metrics in an Agile/Distributed
Project

Walter Ambu, Giulio Concas, Michele Marchesi,
Sandro Pinna . 85

X Table of Contents

The Effect of Test-Driven Development on Program Code
Matthias M. Müller . 94

Issues in Large Scale Agile Development

Configuring Hybrid Agile-Traditional Software Processes
Adam Geras, Michael Smith, James Miller . 104

Rolling the DICE R© for Agile Software Projects
Bart�lomiej Zió�lkowski, Geoffrey Drake . 114

Agility in the Avionics Software World
Andrew Wils, Stefan Van Baelen, Tom Holvoet,
Karel De Vlaminck . 123

New Practices for Agile Software Development

Architecture and Design in eXtreme Programming; Introducing
“Developer Stories”

Rolf Njor Jensen, Thomas Møller, Peter Sönder,
Gitte Tjørnehøj . 133

Towards a Framework for Integrating Agile Development
and User-Centred Design

Stephanie Chamberlain, Helen Sharp, Neil Maiden 143

Security Planning and Refactoring in Extreme Programming
Emine G. Aydal, Richard F. Paige, Howard Chivers,
Phillip J. Brooke . 154

Experience Papers

Divide After You Conquer: An Agile Software Development Practice
for Large Projects

Ahmed Elshamy, Amr Elssamadisy . 164

Augmenting the Agile Planning Toolbox
J.B. Rainsberger . 169

Incorporating Learning and Expected Cost of Change in Prioritizing
Features on Agile Projects

R. Scott Harris, Mike Cohn . 175

Table of Contents XI

Automatic Changes Propagation
Maciej Dorsz . 181

Making Fit / FitNesse Appropriate for Biomedical Engineering
Research

Jingwen Chen, Michael Smith, Adam Geras, James Miller 186

Sprint Driven Development: Agile Methodologies in a Distributed Open
Source Project (PyPy)

Beatrice Düring . 191

Posters and Demonstrations

Storytelling in Interaction: Agility in Practice
Johanna Hunt, Pablo Romero, Judith Good . 196

Towards an Agile Process for Building Software Product Lines
Richard F. Paige, Xiaochen Wang, Zoë R. Stephenson,
Phillip J. Brooke . 198

Extending the Embedded System E-TDDunit Test Driven Development
Tool for Development of a Real Time Video Security System Prototype

Steven Daeninck, Michael Smith, James Miller, Linda Ko 200

Evaluation of Test Code Quality with Aspect-Oriented Mutations
Bartosz Bogacki, Bartosz Walter . 202

Experimenting with Agile Practices – First Things First
Fergal Downey, Gerry Coleman, Fergal McCaffery 205

Test-Driven Development: Can It Work for Spreadsheet Engineering?
Alan Rust, Brian Bishop, Kevin McDaid . 209

Comparison Between Test Driven Development and Waterfall
Development in a Small-Scale Project

Lei Zhang, Shunsuke Akifuji, Katsumi Kawai, Tsuyoshi Morioka 211

A Practical Approach for Deploying Agile Methods
Minna Pikkarainen, Outi Salo . 213

Streamlining the Agile Documentation Process Test-Case Driven
Documentation Demonstration for the XP2006 Conference

Daniel Brolund, Joakim Ohlrogge . 215

XII Table of Contents

Panels

Open Source Software in an Agile World
Steven Fraser, Pär J. Ågerfalk, Jutta Eckstein, Tim Korson,
J.B. Rainsberger . 217

Politics and Religion in Agile Development
Angela Martin, Rachel Davies, Jutta Eckstein, David Hussman,
Mary Poppendieck . 221

How Do Agile/XP Development Methods Affect Companies?
Steven Fraser, Barry Boehm, Jack Järkvik, Erik Lundh,
Kati Vilkki . 225

Author Index . 229

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 1 – 10, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Distributed Cognition Account of Mature XP Teams

Helen Sharp and Hugh Robinson

Centre for Research in Computing
The Open University

Walton Hall
Milton Keynes MK7 6AA UK

{h.m.robinson, h.c.sharp}@open.ac.uk

Abstract. Distributed cognition is a framework for analysing collaborative
work. It focuses on interactions between people, between people and their
environment and between people and artefacts that are created and manipulated
in the course of doing work, and it emphasises information flow and informa-
tion transformation. Analyses conducted using the distributed cognition frame-
work highlight breakdowns and potential problem areas in the collaborative
work being studied; distributed cognition has been used to study a wide variety
of collaborative work situations. XP teams are highly collaborative, relying
heavily on interactions between team members and their environment. In this
paper we present accounts of four mature XP teams based on the distributed
cognition framework.

1 Introduction

Distributed cognition is an approach for conceptualising human work activities that
considers the people, their environment and the artefacts that are created and
manipulated as one large cognitive system. The approach originated with Ed
Hutchins’ work on ship navigation [1] in which he explored the complex system that
results in the current position and target position being identified and transformed into
the required course to steer. This system involves a series of information
transformations through a variety of media including the spoken word, control panel
lights and dials, instruments, landmarks and so on. The approach has been used in the
analysis of computer-supported co-operative work (CSCW) in order to identify the
impact of new or intended technologies on collaborative work such as call centers
(e.g. [2, 3]) and communities of practice (e.g. [4]), among other areas. It has also been
adapted for use in HCI analyses to support the development of interactive systems
(e.g. [5, 6]).

It has been argued [7] that the distributed cognition framework provides a unifying
approach to studying socially complex work situations that pulls together different
disciplines that have traditionally studied such phenomena, e.g. the cognitive, social
and organisational sciences. The framework therefore supports analysis of a situation
that takes a more holistic view of the work and its progress.

Although software engineering is recognised as a social activity by many, there
have been few reported studies of software development activity using a distributed
cognition approach. Flor and Hutchins’ [8] study of two programmers working

2 H. Sharp and H. Robinson

together during a maintenance activity is the most widely cited application of this
theory to the study of software development activity. They observed and recorded two
programmers working together on a maintenance task in order to characterise some of
the system variables that were important for the success of the task. They did this by
analysing the interactive distribution of information used in the task.

The program itself was a graphic adventure game and consisted of about 3000 lines
of C code. The change to be made involved adding a ‘whisper’ command to the
program – this command would take a string as input and send that string only to the
player indicated. The programmer’s interactions were recorded using videotape and
all keystrokes and output at the computer terminal were logged. The analysis was
performed on a written transcription of the videotape, the commands entered and the
times they were entered, and interactions with documentation that were captured on
the videotape. Therefore the analysis focused on the detail of the programmer’s
interactions, but did not consider the wider team or system context.

At the end, they had identified a set of seven properties of the cognitive system that
consisted of the two programmers and their immediate environment. These properties
were: reuse of system knowledge, sharing of goals and plans, efficient communi-
cation, searching through large spaces of alternatives, joint productions of ambiguous
plan segments, shared memory for old plans and division of labour. Some of these
properties, such as reuse of system knowledge and searching through large spaces of
alternatives, have been observed before in studies of software development (e.g. [9]),
and some of them have similarities to XP’s practices. However Flor and Hutchins
considered only one episode of collaborative programming, and they did not attempt
to extend their analysis beyond this restricted view.

In this paper we broaden the scope of analysis to consider the whole XP team and its
interactions over the course of a week or so rather than focus tightly on the details of
one programming episode. The cognitive system under scrutiny therefore is the XP
team and its environment. To do this, we discuss the results of observational studies
with four mature XP teams working on different applications and in varying
environments. In the next section we characterise the information flows through and
around each of the four teams. Then we describe in more detail the approach to
distributed cognition that we adopt in this paper. In section 4 we present distributed
cognition accounts of these teams, and in section 5 we highlight breakdowns that we
have observed. In the final section, we conclude that looking at teamwork through the
lens of distributed cognition allows us to identify potential issues regarding information
flow and transformation within and between an XP team and its environment.

2 Information Flow and Transformation Within the Four Teams

In our previous work, we have found that stories in XP are a key mechanism for
capturing and propagating information throughout the XP team (e.g. [10]), and so the
description of our teams and their information flows focuses on the generation and
manipulation of stories. Further information about teams B, C and W can be found in
[10, 11, 12, 13].

Team B produced software applications in Java to support the management of
operational risk within a large bank. They were organised into two sub-teams. Stories

 A Distributed Cognition Account of Mature XP Teams 3

were generated during the planning game with developers and the customers present.
They were captured on index cards. The developers estimated the story cards and
wrote the estimate on the cards. The cards were then dealt onto a table, sorted through
and rearranged before being placed on a portable board. Throughout the iteration, the
cards were treated as tokens for work to be done, and developers would take the cards
off the board and use them to generate code. Continual dialogue, focused around the
story card, took place between the developers and the customers in order to clarify
and expand the story content.

Team C developed web-based intelligent advertisements using Java. The customer
role was carried out in this team by marketing personnel who were in regular contact
with the client. The marketing personnel generated the stories following discussions
with the client, wrote them onto index cards, and prioritised them in the planning
game. Developers wrote estimates on the cards and those for the current iteration
were displayed on a common wall. At the end of an iteration a summary of the stories
completed, started and abandoned during the iteration was written to a wiki site and
the cards were put into storage. Cards that were obsolete or superseded were torn up
and not kept.

Team S worked in a large international bank, and programmed in Java. Their
project concerned the migration of database information from several smaller
databases to one large database. The work to be completed was controlled by the
project manager of the team, who was not himself one of the developers. The stories
were developed from the overall project plan which listed the functionality to be
implemented. Stories were prioritised through consultation with the business analysts
and the developers. Once written on index cards, the stories were estimated and the
cards displayed for all the team to see.

Team W were part of a medium-sized company producing software products in C++
to support the use of documents in multi-authored work environments. Within each
iteration, the team organised itself into sub-teams oriented around the various software
products or related issues. Stories were generated by the programme managers who
were hybrid figures with some technical and some business expertise. They liaised with
the marketing product manager on the customer side and the developers on the software
side. Stories were captured and manipulated using a purpose-built software package.
Developers looked at the online story and estimated the time required to complete it.
Testing information was stored alongside functionality information, and the system
underwent a tiered set of tests - developers were responsible for unit tests, testers (a
separate element of the team) tested the stories in context, and the QA department
(quality assurance) tested the whole product.

Each team was observed for about a week; our observations focused on the
interactions between team members and their environment, and the data collected
included contemporaneous notes, photographs and some audio recordings.

3 Analysis Approach

The initial analysis of our data followed a rigorous approach in an ethnographic tradition.
This approach involves seeking counter examples to any suggested finding. For example,
where we observe that developers in a team preferred to work on problems together, we

4 H. Sharp and H. Robinson

also seek evidence in our data that would underpin the opposite result, i.e. examples
where team members chose to tackle similar problems on their own.

A distributed cognition analysis takes the view that a cognitive system extends
beyond what goes on in an individual’s head and encompasses the wider interactions
and information transformations that are required in order to achieve a goal. A
distributed cognition analysis typically involves examining the following aspects of
the cognitive system [14]:

 The distributed problem-solving that takes place;
 The role of verbal and non-verbal behaviour (what is said and what is not

said, but simply implied, are equally important)
 The co-ordinating mechanisms that are used;
 The communicative pathways involved in a collaborative activity;
 How knowledge is shared and accessed

It also investigates the information flow through the cognitive system and identifies
where ‘breakdowns’ may occur. Breakdowns are potential failures in communication
or information flow that will impair the system’s performance or prevent the system
from achieving its goals. More formal breakdown analysis has been used to
investigate collaborative software systems (e.g. [15]).

In the accounts that follow, we address each of these issues in turn, drawing on the
observational data we have collected. In each case and before making an observation,
we have carefully considered whether we have evidence to contradict the statement
we want to make.

4 Accounts of XP Teams

Developing a software system requires access to a lot of information. Fundamentally,
there is the set of requirements for the software, but in order to produce the required
software, information regarding deadlines, estimates for completion, responsibilities,
the status of code under development, criteria for assessing when code is complete,
priorities regarding which pieces of software to work on when, technical details of a
language or infrastructure, and so on. To follow the detailed information flow paths
for each of these would require more space than this paper allows, and indeed our
data is not detailed enough to support such an analysis. Instead, our accounts give a
broader view of information flow, transformation and application. A more detailed
study is left to another day.

4.1 Distributed Problem-Solving

Problem-solving was highly distributed in all of our teams, both across people and
across time.

One example of this is the use of pair programming to develop code, and each of
our teams saw pairing as an essential part of their normal working practice. Having
said this, observed behaviour did vary. For example, Team C paired for all of their
tasks with very little change from this routine, while Team S paired for the majority
of tasks when there was an even number of developers available, and the smaller sub-
team in Team B had an odd number of developers and hence could not work

 A Distributed Cognition Account of Mature XP Teams 5

exclusively in pairs. Team W’s working moved seamlessly from singletons to pairs
and three-somes and occasionally into a larger group of team members. So problem-
solving is usually distributed between at least two programmers, and between more
than two if the situation demands it.

The distribution of problem-solving responsibility would extend to the team’s
customers, as needed. Each team’s involvement with the customer varied, depending
in part on the nature of the application and their availability. For example, Team S
had very little contact with the customers of the system, but had a lot of interaction
with the business analysts who knew the database structures and their uses. In this
team, a discussion between a pair of developers to understand the problem was often
extended to include the analysts. However analysts were not observed referring to the
developers for help with solving the problems they encountered. Team W interacted
mostly with the programme managers, and programme managers would frequently
work with the marketing product managers.

One characteristic of problem-solving within our XP teams was that information
was available from a number of sources including other members of the team, the
customer, text books, intranet wikis and internet developer sites. For example,
members of Team S would regularly consult a reference book, an online developer
site, database documentation and the project manager in order to solve a problem.

Each person within a team was actively engaged in solving the problem as
appropriate for their expertise. This manifested itself through the problem-solver
actively seeking out the individual with the required expertise, but also individuals
offering their help where appropriate. For example, in none of our teams did we
observe a team leader nominating developers to help with an identified problem –
people organised themselves to obtain and offer the appropriate advice. Where this
involved one individual interrupting the work of another, both the interrupter and the
interrupted respected each other’s needs and worked together to find a suitable answer
to the issue at hand.

This kind of distributed problem-solving, i.e. distributed across people, was
observed on a daily routine basis. In addition to this, problem-solving is distributed
over time. Test-first development means that the design of some code is considered
before coding begins. Then, as the code evolves, we observed that issues may be
raised during stand-up meetings, at iteration planning meetings and during lunch,
coffee breaks and informal get-togethers. During our study of Team B, a particularly
complex story exceeded its estimate and extended over more than one iteration, but
the team persevered as they recognised it as a key part of the functionality.

4.2 Verbal and Non-verbal Behaviour

The character of each team we have studied is very different in terms of size,
programming language, organisational setting, team composition and outlook.
However each team had a keen sense of purpose and enthusiasm for their working.
Team W for example appeared to work in a very solemn and serious atmosphere,
while the atmosphere around Team S was much more relaxed. However all teams
relied heavily on verbal communication. They were very sensitive to the need to talk
with each other within the team and with customers or with others who had the right
expertise. For example, when Team C faced a technical problem that they could not

6 H. Sharp and H. Robinson

solve internally, they had no qualms about contacting an outside consultant for
advice.

Individuals vary in how they best communicate ideas and thoughts. For example in
Team S there was one individual who liked to write down notes, draw diagrams and
generally doodle while exploring an issue. Any pairing session he was involved in
produced and relied on a large collection of these notes and diagrams. On the other
hand, another of the team members wrote only short notes on index cards, while
another was not observed writing any notes at all. When these latter two team mates
were pairing they did not talk very much, but often would turn to each other and
appear to be seeing and manipulating an artefact in between them (which presumably
represented the code, or the problem they faced). At these times, they spoke little
except to make comments about the common artefact that they were both working on.

Although the purpose of pairing is to produce code, the process of pairing is
fundamentally about communication – both verbal and non-verbal. We have observed
elsewhere that this interaction is much like a three-way conversation [12], with
developers occasionally talking directly with each other, sometimes interacting
through the code and sometimes interacting directly with the code while the other
developer watches. This intense three-way relationship introduces different ways of
communicating; both developers typically engage in talking, typing, and gesturing -
using the cursor and highlighting techniques to focus attention. In addition, the ability
for pairs to overhear and be overheard appears to support the distributed nature of
problem-solving where relevant expertise is offered when it is needed.

Other examples of the effect of non-verbal behaviour are the unannounced start of
a stand-up meeting, and the use of a non-verbal noise to communicate information. In
the former case, Team S did not often have to announce the fact that it was time for
the daily stand-up meeting. When the time approached, team members would
automatically congregate at the appropriate spot and the meeting would start. In Team
C, a non-verbal noise was used to signify the release of tested code into the code base;
in this case it was an artificial animal sound.

4.3 Co-ordinating Mechanisms

There were broadly two different types of co-ordination that we observed in our XP
teams: regular and ad hoc. We first consider the regular mechanisms. Team C relied
entirely on the manipulation and display of story cards, the planning game, and daily
stand-ups for co-ordination. Team S also relied on these but in addition the project
manager held the overall project plan from which story cards were generated. Team B
used a similar approach to Team S. Team W did not have physical story cards, but
kept their stories within the supporting software environment. This meant that the
detailed manipulation of stories was not clearly visible, although they employed
summary flip charts which showed which stories were being worked on and who was
in which team.

All the teams were self-organising and hence there was little or no co-ordination
imposed from the team’s higher management. The key regular co-ordinating
mechanisms were therefore the story cards, the planning game and the daily stand-ups.

Supporting this more regular co-ordination was the wide spectrum of ad hoc
meetings, peripheral awareness, and fluid pairing situations, as we discussed above.

 A Distributed Cognition Account of Mature XP Teams 7

The stand-up meetings, for example, would be less effective if these other mecha-
nisms were not in place.

4.4 Communicative Pathways

In general, communicative pathways in our XP teams were simple. In all cases,
developers had direct and regular contact with the customer or the customer’s
representative, and they had clear and uncomplicated access to fellow team members
and local, relevant expertise. The story was a key focus of all communicative
pathways.

Within the team, communication happened through a network rather than along a
single pathway. As we have discussed above, the teams all had effective ways of
keeping each other informed of development issues, and the team members
volunteered information when they felt it was relevant.

In Team C, if an issue arose with a customer, then the marketing person assigned
to that customer would talk directly with the developer(s) working on the relevant part
of the software. It was noticeable, however, that the marketing personnel would not
walk straight into the developer ‘pens’, but would wait around outside until they were
noticed by the developers (see [10] for more detail). In Team W, information
regarding the wider product picture was communicated via marketing product
managers or other senior staff on a regular basis, as and when there was something to
report.

4.5 Knowledge Sharing and Access

Collective ownership is one of the practices that underpins XP. Hence it is no surprise
that we found knowledge sharing and access to relevant expertise to be well-
supported. For example, in all teams, pairs were formed explicitly on occasions to
provide a balance between experience and novice status in order to expose novices to
areas of the code that they did not know.

The most public evidence of knowledge sharing and access was the use of
information radiators [16] to show the current status of the stories. We found these in
all teams. Even in Team B where the organization rules regarding the sticking of
items onto the walls prevented them from using a traditional board, they used a
portable board or flipchart.

The above descriptions have painted a picture which implies that all developers are
equal in terms of their capabilities and their ‘specialisms’. Indeed we have not
mentioned specialisms before. In Team C for example, there were eight developers,
but also one graphic designer and one IT support manager. The graphic designer was
not a Java programmer. She produced HTML and graphical images but in order to
also gain an appreciation of the concerns of the developers, she would often pair with
one of the Java programmers. In these circumstances her contribution to the
development of code was minimal but the team all felt it important to share
knowledge in this way. The graphic designer and IT support manager would often
work together on tasks.

In other teams where ‘specialists’ did not pair with developers, all team members
were actively involved in the daily stand-ups and other regular meetings. For

8 H. Sharp and H. Robinson

example, Team W included a technical author, web developers and two testers who
did not pair with developers, but they attended the meetings.

4.6 Potential Breakdowns in Information Propagation

In each team, we found evidence of breakdowns, or potential breakdowns.
Informal communication can breakdown when the parties involved don’t have a

common memory of the conversation and what was decided. In Team C the planning
game involved estimating the cards and in order to do that it was necessary to gain a
level of understanding about how to implement a solution, and that required some
design. However the design used as the basis for estimating was not documented and
it was not uncommon (as reported to the researcher) for a different design to be
implemented and the estimate to be compromised. This illustrates the potential of
collective memory to fail. This is not necessarily a problem situation provided the
changed design and its rationale are communicated to others, but it is a potential
breakdown.

Communication can also break down where there are ‘too many’ information
flows. Team W did not, at the time of the study, use physical story cards, but stored
information in an online internal software system. This had several advantages,
including the fact that significant information could be kept alongside the main story,
including acceptance tests, modifications, estimates, a history of who worked on the
code, and so on. However we observed a situation where a story number was
transcribed incorrectly, which led to a tester running the wrong acceptance test against
a story. Due to the nature of the story and of the application it took significant time to
realise that the code he had downloaded was not the code he should have been
running against the given test. There are many possible ways that this could be
avoided, e.g. better structuring of information online, double-checking of codes and
tests, automatic linkages between code and tests, etc. However, it is interesting to note
that shortly after we had completed our study in this organisation, they introduced
physical story cards.

XP teams rely on self-managing and self-organising individuals who are prepared
and able to take on responsibility for their work. This has significant advantages, but
one consequence of this is that individuals regard their time as precious. We
witnessed a situation in Team S which illustrated this. The project manager called a
meeting of the developers (at the time, only four of them were in the office) in order
to discuss a significant technical issue. One of the developers was unhappy as he did
not understand why they were discussing this issue, nor the purpose of the meeting
(i.e. what is going to be the result of this meeting). In this situation, the project
manager was sharing information, but had not adequately explained the issue’s
significance or the meeting’s purpose. Interestingly the other team members made
considerable efforts to ensure that the unhappy developer was calmed.

The potential breakdown we identified in Team B revolves around the organi-
sation’s internal procedures and the team’s expectation of timely feedback. Once the
software had been tested internally, the software was handed over to another part of
the organisation to run the acceptance tests, and this part of the organisation did not
operate under XP principles. The consequence of this is that results from the
acceptance tests were fed back to the developers 4 or 6 weeks after they had finished

 A Distributed Cognition Account of Mature XP Teams 9

working on the software. This caused considerable consternation as the team had been
working for several weeks on software that did not pass the acceptance tests.

We mentioned above the reliance of regular co-ordination mechanisms on the more
ad hoc mechanisms. We did not see any examples of the ad hoc mechanisms failing,
but if they did our analysis suggests that the regular co-ordination mechanisms might
also suffer.

5 Discussion

One of the consequences of the XP approach to development is that much of the
knowledge and expertise required to solve problems that are encountered is available
quickly and easily in a form that can be immediately applied to the existing situation.
For example, because one of the XP practices is collective ownership, all team
members have a good understanding of the context of any problem that arises. This
means that the time needed to explain the problem is minimised, and the applicability
of potential solutions can be assessed rapidly. One way of expressing this is to say
that the team members have sufficient common ground to be able to communicate
effectively. Common ground is a key concept in co-ordination activities and without it
collaborators need to express every detail explicitly [17, 18]; the discussions above
indicate that XP teams need to maintain considerable common ground. There has
been much debate about how to choose programmers to join an XP team. There is
wide consensus that the new programmer needs to be compatible socially with the
other team members, but we would also suggest that the level of common ground
between the new programmer and the existing team (in terms of technical knowledge
and experience, or in the specific application domain) will affect their compatibility
with existing team members.

The main transformation taking place in this cognitive system is that of transforming
the story into executable code. There is very little information propagation outside the
story – the story remains the central focus of development from the time it is created
until the code is handed over. One reason that these simple flows are sufficient for the
team’s needs is that the work is divided into small manageable chunks, thus restricting
the amount of information needed to complete the story.

6 Conclusion

Looking at XP teams using the framework of distributed cognition shows us that XP
teams use a simple flow of information that is underpinned by shared understanding
of the software under development and sufficient common ground to support effective
communication. To achieve their goals, XP teams tend to work in information-rich
environments with easily accessible, easily applicable knowledge. Individual team
members put effort into making sure the cognitive system performs as it should. The
regular co-ordination mechanisms used, for example, would not be as effective if the
more ad hoc system were to stop working. XP has a deep cultural attachment to close-
knit, informal settings. In this analysis, we have indicated the benefits of this kind of
setting for effective working. Potential breakdowns we have identified stem from a
disturbance of the simple, coherent cognitive system we have described.

10 H. Sharp and H. Robinson

Conclusions from the work reported here fall into two areas: practical implications,
and research implications. We suggest that practitioners study the potential break-
downs identified in Section 4, and consider whether any of these situations applies to
their own circumstances. For researchers, we would argue that the analysis presented
in this paper has shown the potential of distributed cognition to shed light on informa-
tion propagation within an XP team from a novel perspective, but that this work has
only just begun and there is clear scope for more, in-depth studies.

References

[1] Hutchins, E. (1995) Cognition in the Wild, Cambridge MA: MIT Press.
[2] Halverson, C. A., (2002) Activity theory and distributed cognition: Or what does CSCW

need to DO with theories? Computer Supported Cooperative Work, 11:243-267.
[3] Jones, P.H. and Chisalita, C. (2005) Cognition and Collaboration – Analysing Distributed

Community Practices for Design, CHI 2005 Workshop, April 2005, Portland, Oregon.
[4] Hoadley, C.M. and Kilner, P.G. (2005) Using Technology to Transform Communities of

Practice into Knowledge-Building Communities, SIGGROUP Bulletin, 25, 1, 31-40.
[5] Hollan, J. Hutchins, E., Kirsch, D. (2000) Distributed Cognition: Toward a new

foundation for human-computer interaction research, ACM Transactions on Computer-
Human Interaction, 7(2), 174-196.

[6] Wright, P.C., Fields, R.E. and Harrison, M.D. (2000) Analyzing Human-Computer
Interaction as Distributed Cognition: the resources model, Human-Computer Interaction,
15, 1-41.

[7] Rogers, Y. and Ellis, J. (1994) Distributed Cognition: an alternative framework for
analyzing and explaining collaborative working, Journal of Information Technology, 9,
119-128.

[8] Flor, N.V. and Hutchins, E.L. (1992) Analyzing distributed cognition in software teams: a
case study of team programming during perfective maintenance, Proceedings of
Empirical Studies of Programmers, 1992

[9] Detienne, F. (2002) Software Design - Cognitive Aspects, Springer-Verlag, London.
[10] Sharp, H. and Robinson, H. (2004) An ethnographic study of XP practices, Empirical

Software Engineering, 9(4), 353-375.
[11] Robinson, H. and Sharp, H. (2004) The characteristics of XP teams, in Proceedings of

XP2004 Germany, June, pp139-147.
[12] Robinson, H. & Sharp, H. (2005) The social side of technical practices, in Proceedings of

XP2005, LNCS 3556, 100-108.
[13] Robinson, H. and Sharp, H. (2005) Organisational culture and XP: three case studies, in

Proceedings of Agile 2005, IEEE Computer Press pp49-58.
[14] Preece, J., Rogers, Y. and Sharp, H. (2002) Interaction Design: beyond human computer

interaction, John Wiley & Sons, Chichester.
[15] Scrivener, S., Urquijo, S.P. and Palmen, H.K. (1993) The Use of Breakdown Analysis in

synchronous CSCW system design, Proceedings of ECSCW, 517-534.
[16] Beck, K and Andres, (2005) Extreme Programming Explained: Embrace Change (2nd

edition), Addison-Wesley.
[17] Clark, H. and Schaefer, E. (1998) Contributing to discourse, Cognitive Science 13,

259-294.
[18] Flor, N. (1998) Side-by-side collaboration: a case study, International Journal of Human-

Computer Studies, 49, 201-222.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 11 – 20, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Foundations of Agile Decision Making from Agile
Mentors and Developers

Carmen Zannier and Frank Maurer

University of Calgary, Department of Computer Science
2500 University Drive NW, Calgary, AB, CAN

{zannierc, maurer}@cpsc.ucalgary.ca
http://ebe.cpsc.ucalgary.ca/ebe

Abstract. There are few studies of how software developers make decisions
in software design and none that places agile in the context of these decision
making processes. In this paper, we present results of interviewing agile
software developers and mentors to determine how design decision making
aligns with rational decision making or naturalistic decision making. We pre-
sent results of twelve case studies evaluating how agile professionals make
design decisions, comparing mentor perspectives to developer perspectives.
We describe our interview technique, content analysis used to analyze inter-
view transcripts, and the interpretation of our results, to answer the question:
how do agile designers make design decisions? Our results show that natural-
istic decision making dominates design decision making but is supported by
rational decision making.

1 Introduction

In this paper, we examine how agile software designers make software design deci-
sions. There are three reasons to examine this topic. Firstly, little work exists concern-
ing how decisions are made in software design [5][11], and none of this work focuses
on agile methodologies, but evidence shows the ubiquity of design decisions in soft-
ware development and the significant impacts of these decisions on software devel-
opment [21][11][12]. As a result, there is a strong call and need to examine software
design decisions [1][5][11][12][21][24]. Secondly, this topic provides insight into the
important behavioral dimensions surrounding software design. Our work underscores
the idea that, “the major problems of [software design] work are not so much techno-
logical as sociological in nature” [6], as well as the agile value of People and Interac-
tions over Processes and Tools [2]. Lastly, by understanding the way that designers
work and think, we can evaluate existing design processes and metrics against the
way designers actually work and think, and we can motivate design processes and
metrics suited to inherent work and thought processes.

Our multi-case study of twelve members of the agile community looks for consis-
tency between agile mentors’ ideas about design decisions and agile developers’ prac-
tices in making design decisions. We define a design decision as the selection of an
option among zero or more known and unknown options concerning the design of a

12 C. Zannier and F. Maurer

software application [26]. We say zero or more because making no choice is still
making a choice. We define an agile decision as a decision occurring in an agile envi-
ronment. We define an agile developer as an interview subject who discussed a design
decision that they championed when s/he was a member of a design team. We define
an agile mentor as an interview subject who discussed design decisions as an abstract
concept, based on the culmination of design experiences with software development
teams where s/he was a coach or paid consultant. More than one design decision was
discussed briefly in mentor interviews, as opposed to a detailed discussion of one
design decision, in a developer interview. The abstract level at which mentors dis-
cussed design decisions allowed us to compare general understanding of agile work
(e.g. agile literature and rhetoric found in the agile community) to actual practice of
agile work, as reported by members of the agile community. We do not evaluate the
quality of the decision.

Our empirical study provides two ground breaking results in the area of agile de-
sign decision making. Firstly, we find agile design decision making includes elements
of both rational decision making (RDM) and naturalistic decision making (NDM)
[14][17]. The current state of decision making literature suggests these decision mak-
ing approaches are independent of each other. For example, fire-fighters use NDM
[14], and operations researchers use RDM [17]. Our results show that in agile design,
decisions are made using aspects of both, concurrently. This impacts the area of agile
design by challenging traditional views of decisions, making agile research a forerun-
ner in design decision making research. Our second result shows much agreement
between agile developers and mentors. This impacts the area of agile design by
strongly suggesting that what agile developers say they do is closely aligned with
what they are seen doing. Such agreement in the agile community is a qualitative
indicator of the effectiveness of agile literature and rhetoric.

Section 2 provides the background work and Section 3 describes our methodology.
Section 4 describes results that emerged from our interviews. Section 5 compares
quotes from agile mentors and agile developers to show similarities and differences.
Section 6 discusses validity and Section 7 concludes this work.

2 Background

2.1 Decision Making

We use the concepts of rational and naturalistic decision making to provide insight on
software design decision making. Rational decision making (RDM) is characterized
by consequential choice of an alternative [17] and an optimal selection among alterna-
tives. To select an optimal alternative, three features are required. First, alternatives
are represented by a set of possible courses of action and potential outcomes for each
action. Second, a utility function assigns a value to each possible action based on the
attributes of its outcome. Third, a decision has probabilities for which outcome will
occur given the selection of an alternative. Consequential choice is the analysis of
alternatives and potential outcomes, typical of rational decision theory [16][17].
While consequential choice is a main factor of RDM, three other assumptions are also
important. The first is the possible courses of action and the probability of specific

 Foundations of Agile Decision Making from Agile Mentors and Developers 13

outcomes are known. The second is a decision maker pursues optimality. The third is
the large amount of time calculating alternatives is acceptable [14][19].

Naturalistic decision making (NDM) is defined by six characteristics [14]. A natu-
ralistic decision appears in dynamic and turbulent situations. It embodies fast reac-
tions to changes and embraces ill-defined tasks and goals. A naturalistic decision is
resolved under the guidance of knowledgeable decision makers. It uses situation as-
sessment and has a goal of satisficing design alternatives, instead of optimizing them.
Situation assessment is the evaluation of a single alternative. A decision maker exer-
cises this alternative after determining it is “good enough” [14]. Satisficing is the
acceptance of a satisfactory alternative (e.g. “Good Enough Software”) [14][4].

2.2 Doing Software Design

Software design is a problem structuring activity accomplished throughout the soft-
ware development lifecycle [7][8][9][10]. A well-structured problem (WSP) is a prob-
lem that has criteria that reveal relationships between the characteristics of a problem
domain and the characteristics of a method by which to solve the problem [22]. An
ill-structured problem (ISP) is a problem that is not well structured [30].

A survey of software design studies, [1][3][5][7][8][9][10][18][21][23][24], shows
that six related qualities impact software design: expertise, mental modeling, mental
simulation, continual restructuring, preferred evaluation criteria and group interac-
tions. While we do not consider this to be an exhaustive list of what impacts software
design, the qualities and the studies give us some background about the way designers
work. Expertise is the knowledge and experience software designers have in design
[1]. Existing studies showed expertise is fundamental to design productivity [5], and
that higher expertise resulted in an improved ability to create internal models and run
mental simulations [1][3][23]. Mental modeling is the creation of internal or external
models by a designer. A mental model is capable of supporting mental simulation [1].
Mental simulation is the "ability to imagine people and objects consciously and to
transform those people and objects through several transitions, finally picturing them
in a different way than at the start" [21]. Mental simulations occurred throughout the
software design process at varying levels of quality dependent upon the skill of the
designer and the quality of the model on which the mental simulation ran [1][5][7][8].
Continual restructuring is the process of turning an ISP to a WSP. The term "preferred
evaluation criteria" refers to the minimal criteria a subject adopts to perform continual
restructuring [14]. It occurred on an individual level or group level [7][24][5]. Group
interactions are the dynamics of group work in software design. The terms "distrib-
uted" and "shared" cognition suggest that individual mental models coalesce via
group work, resulting in a common model [7][24].

3 Methodology

We discuss our research methodology in terms of data collection and data analysis.
We interviewed software designers about critical design incidents, and the decisions
made concerning software design, using a critical decision method (CDM) [13]. The
CDM studies “cognitive bases of judgment and decision making.” [13]. The CDM
contains questions regarding cues, knowledge, goals, options, experience, and time

14 C. Zannier and F. Maurer

pressure surrounding a decision but the CDM is not indicative of NDM or RDM.
Such indications are generated from our interpretations in Section 4. Table 1 lists the
themes covered during the interview, and an example of how we asked the question.
In practice the interview question was tailored to the context of the interview.

The software designers interviewed include recognized experts in successful soft-
ware design, both as developers and as mentors. All of the interviewees presented in
this paper were familiar with and used agile methods. In order to find new subjects to
interview, we used snowball sampling “(getting new contacts from each person inter-
viewed)” [20, p.194]. We did not restrict by age, experience, mentor versus developer
roles, or by any other demographic characteristic. The comparison between 6 mentors
and 6 developers emerged from a larger set of 25 interviews. Such emergence is in-
dicative of certain formes of qualitative inquiry [20]. The interview subjects dis-
cussed varying types of software systems and we did not distinguish among the
different types. The interview subjects in this paper discussed web based business
applications, and/or small software systems (e.g. ~3-15 developers). Thus far we have
not found any consistent differences in approaches to decision making, between web-
based applications and non-web based applications.

Table 1. Design Decision Making Interview Questions

Decision
 Describe how you make a design change to a system, and how you make the

decision to make the change.
Cues
 What do you see, hear, discuss, that suggests a change needs to occur?
Knowledge
 Where do you acquire the knowledge to make the change?
Options
 Discuss the extent to which you consider options in making a design change.
Experience
 To what extent do specific past experiences impact your decision?
Time Pressure
 How does time pressure impact decisions in design changes?
Externals
 How do external goals impact decisions in design changes?

Consistent with naturalistic inquiry [14], we examined each critical design incident
as an explanatory case study of the context and circumstances surrounding one or
more design decisions [25]. We considered each case separately in order to allow the
participant viewpoint to speak for itself. From a single case, we then made initial
statements about software design decision making and then revisited the initial case
and examined new cases to continuously shape the statements [25]. This pattern
continued, incorporating more cases, until our theoretical propositions about design
decision making were able to explain all cases [25]. This multiple-case design allows
researchers to develop general knowledge about social phenomena from both the
induction of data, and the deduction from theory [25].

 Foundations of Agile Decision Making from Agile Mentors and Developers 15

We used content analysis [15], to identify recurring themes in the interviews to
validate our theoretical propositions. Content analysis places words, phrases, sen-
tences or paragraphs into codes which can be predefined or interactively defined [15].
Finally, for each question we used interpretations in Table 2 to decide if interview
answers followed RDM or NDM.

4 Thematic Results

Using RDM and NDM to guide the generalizing of our interviewee approaches to
decision making [25], we interpreted each interview question as it related to the at-
tributes of RDM and NDM. We found differences between RDM and NDM in the
goal, method, effect of environment, and the nature of the knowledge employed in the
decision as shown in Table 2. In the following description of Table 2 the bold text
represents data we collected during our interviews. Each of the four paragraphs con-
tain propositions we formed, evaluated and modified as we analyzed each case.

If a decision maker’s goal was to optimize design (rational), then information cues
were considered to indicate right or wrong decisions. If the decision maker’s goal was
to satisfice design (naturalistic), then cues were used only to indicate better or worse
outcomes.

If a decision maker followed consequential choice (rational), then s/he discussed
numerous options surrounding the decision to make a design change. If a decision
maker followed singular evaluation (naturalistic), then s/he did not discuss options.

Table 2. Foundations of Agile Decision Making

Component 1 RDM 2 NDM
Decision Goal (1.1) Optimizing: Cues are

right or wrong, quantifiable
(2.1) Satisficing: Cues are better or
worse, not quantifiable.

Decision
Method

(1.2) Consequential choice:
Options are considered.

(2.2) Singular Evaluation: Options
are not considered.

Decision
Environment

(1.3) Not concerned with
computation overhead: Time
pressure is not a factor in
decision making. External
goals do not impact decision
making. Cues are quantifi-
able.

(2.3) Dynamic conditions: External
goals impact decision making.
Time pressure impacts decision
making.
(2.4) Real-time reactions: Time
pressure is an issue. Cues are from
some trigger.
(2.5) Ill-defined tasks & goals:
Externals impact a decision.
(2.6) Situation assessment: Cues
are unquantifiable.

Decision
Knowledge

(1.4) Cognizant of all possi-
ble courses of action: Spe-
cific experience based knowl-
edge, explicit search of
knowledge.

(2.7) Tacit based knowledge: Ac-
cumulation of knowledge.
(2.8) Experience-based knowledge:
Accumulation of experience.

16 C. Zannier and F. Maurer

If a decision maker was unconcerned about time pressure and the external envi-
ronment (rational), then s/he was unconcerned with computational overhead and
external goals. On the other hand, if the decision maker was concerned about time
pressure (naturalistic), then dynamic conditions, real-time reactions, ill-defined tasks
and goals and situation assessment allowed external goals to influence decision mak-
ing, thus providing little time and point in considering detailed computations.

If the decision maker was cognizant of all possible courses of action (rational),
then experience, knowledge and explicit searches were used to reach decisions. If
the decision maker was not cognizant of all possible courses of action (naturalistic),
then s/he relied on general accumulation of experience or knowledge. Given these
general interpretations, more detailed results illustrate similarities and differences
within and across cases.

5 Mentor and Developer Comparison

We examine each question from Table 1, across all cases, with respect to NDM or
RDM and highlight similarities and differences between mentors and developers.

5.1 Cues

Every case showed that cues to design decisions were difficult to quantify, and thus
needed to be qualified in some way. Feedback from people or a desire to make soft-
ware code express what you want are examples of cues to a design decision. There
was much agreement between the mentor perspective and the developer perspective
regarding the qualitative nature of cues to a design change. For example,

Q1: “You looked at [the data model] and the picture was scrambly. It was like spa-
ghetti code, a spaghetti data model; there were lines everywhere… And that project
failed. So we worked on that project to try to do it again and it was very interesting
because at the end we had something that you could look at and it was aesthetically
pleasing.” Mentor
Q2: “But whenever a customer comes in and says we need a new fee based on this,
it’s a substantial amount of work to implement if it’s not something that is already
supported in the old system.” Developer

Given a large number of quotes such as these and our interpretations found in Ta-
ble 2 (point 2.1) we conclude that cues to design decisions are more naturalistic than
rational. We find consistent results between the agile mentors and agile developers.

5.2 Knowledge

The results from the knowledge question were extremely mixed. Regarding the knowl-
edge a designer used in making a design decision, some developers reported having a
general awareness of ideas, knowing only small things, or the absence of an actual
search for knowledge. Given Table 2 (specifically points 2.7 and 2.8) knowledge seems
to align with NDM. However, some mentors reported searching for knowledge or ac-
tively seeking it out, which aligns more with RDM (Table 2, point 1.4). There was not a
clear disagreement between the mentor and developer perspective but in general the

 Foundations of Agile Decision Making from Agile Mentors and Developers 17

mentors spoke in a more positive fashion about actively searching out knowledge, than
the developers did. For example,

Q3: “I don’t think people come to a design problem and then look it up in … [a]
book. At least not when they’re expected to.” Mentor
Q4: “I’m appalled sometimes at how little people read, how little people go after
knowledge … in organizations.” Mentor
Q5: “I’m always amazed at the teams I work with that won’t read. It drives me nuts…
I don’t see any commonality in what people look at in books. I don’t see them looking
anyway – which drives me nuts! It really does.” Mentor
Q6: “I never use those books. … You talk with purists and they say … every pro-
grammer has read 30, 50, 100 books about this and every year there’s new bibles
coming out…I grew up in software, I guess it comes to me naturally.” Developer
Q7: “I haven’t read a lot of books but there are a few that I have read … You can
read … but until you actually put it into practice you never know, sort of wonder, if
what you read is right or if you even remember it.” Developer
Q8: “I went out and bought a book, the first book on XSLT that came out, a very nice
book, and I just started devouring that book and started trying it out, seeing what
worked. … I bought the book to implement this design idea.” Developer

We found no pattern yet as to when the pursuit of knowledge aligns more with
NDM or RDM. We found no pattern among the mentors and developers, suggesting a
lack of understanding of the way that agile designers learn and pursue learning.

5.3 Options

The results from the options question were mixed as well. Regarding the extent to
which a software designer used consequential choice, the six mentors reported con-
sidering options as an integral step in making a design decision. Given Table 2, point
1.2, this would suggest that design decision making is rational in nature. However,
the six developers reported not considering options to any large degree, choosing an
option they believed would work or choosing an option based on what was the easiest
at the time. Given Table 2, point 2.2 this would suggest decision making is more
naturalistic in nature. For example,

Q9: “…whenever I start thinking about a problem, between the first moment the
problem gets into my head and the moment my fingers hit the keyboard, I’m thinking
about alternatives ….” Mentor
Q10: “[The chosen option] was pretty close to the first one that … popped up on our
radar when we started looking. [It] ended up working and it was the first one that I
tried so [I] didn’t really look at too many other options, no.” Developer

In general we found that the larger the decision, the more the decision maker con-
sidered options. One interpretation of the mentor perspective is that mentors deal
more with larger software design decisions (e.g. architecture, design patterns) than the
type of decisions a developer perspective would discuss (e.g. automated refactorings),
which is why we have a split between our developers and mentors in their approaches
to decision making.

18 C. Zannier and F. Maurer

5.4 Experience

Similar to cues, a software designer’s reliance on past experiences aligned with NDM
across all cases. The case studies suggested that software designers rely on a general
sense of past experiences, but also rely on assessing current situations. None of the
results discussed applying specific past solutions to current design problems. There
was agreement between mentor and developer perspectives. For example,

Q11: “In programming it seems to me as if everything I’ve ever learned is just in [my
brain] … a lot of times I know a thing but I have no idea where it came from. My
brain has turned into this much of ideas that are accessible to me more or less but I
don’t remember the sources, I don’t associate them.” Mentor
Q12: “[The design decision] was generally around the problem of refactoring, so I
thought our code [was] too verbose and I thought we were using the wrong solution
for the problem. So yes, they were reminders of that, that’s pretty generic. Where
you’re working in the system and you say no, we’re solving this problem in the wrong
way. We could solve it in a completely different way that would be much better. … I
had definitely experienced that before.” Developer

From our interpretations found in Table 2 (point 2.8), we conclude that a software
designer’s use of past experience aligns more with NDM than with RDM. We found
consistent results between agile mentors and agile developers in our study.

5.5 Time Pressure and External Goals

Time pressure did not impact decision making for the majority of the cases reporting
results on time pressure and there was much agreement between the mentor and de-
veloper perspectives. Given our interpretations from Table 2 (point 1.3), we conclude
that time pressure and its impact on decision making align more with RDM than with
NDM. Lastly, the impact of external goals on decision making produced a 9:1:2 split
NDM:RDM:N/A for the case studies, with much agreement between the mentor and
developer perspectives. Given Table 2, points 2.3 and 2.5, the impact of external
goals aligns more with NDM than RDM. For both time pressure and external goals
we found consistent results between agile mentors and agile developers.

5.6 Design Decision

We find RDM occurring in design decision making in the form of consequential
choice in large design decisions, in the absence of computational overhead involved
in decision making and sometimes in the pursuit of knowledge used to make a deci-
sion. While NDM is dominant in recognizing a decision needs to be made, in the use
of past experiences and in the impact of external goals, NDM is supported by RDM.

6 Validity

Given that we conducted case studies our external validity relies on generalization to
theory (analytical generalization), and not statistical generalization [25]. All of our
case studies align with our theory described in Section 5.6. For example, one agile

 Foundations of Agile Decision Making from Agile Mentors and Developers 19

developer (from Quote 8) found code “awkward” and “verbose” (qualitative cues) so
he read up on XSLT as a solution to his problem (search for knowledge), “sold the
idea” to business managers (external goals), and then prototyped his idea and fully
implemented it once the prototype worked (singular evaluation of alternatives, satis-
ficing). He felt little time pressure and was not reminded of specific past experiences.

7 Conclusions

We have presented results of a multi-case study with software designers concerning
how they make design decisions. We conclude that NDM dominates design decision
making, with support from RDM where conditions are suitable. Understanding the
nature of software design decision making yields much insight into the way that peo-
ple work, motivating the development of design processes and metrics tailored to our
inherent approaches to decision making. For example, if a junior software designer
follows a satisficing approach to his/her design decisions because s/he is under sig-
nificant time pressure, and if the software engineering community cannot say that
such an approach to design is right or wrong (i.e. it just _is_), then design metrics
should evaluate the resulting design in light of the junior developer’s knowl-
edge/expertise/experience/etcetera and the time pressure imposed on the design
decision. Comparing abstract ideas about the nature of design decisions to specific
experiences in design decisions qualitatively indicates that agile rhetoric is mostly
effective. As a community we lack consensual understanding of how agile designers
pursue learning. This work motivates design processes and metrics that incorporate
the intrinsic nature of agile software design.

Acknowledgments

We thank all of our interview participants who took time to speak with us.

References

1. Adelson B, et al. “The Role of Domain Experience in Soft. Design”; IEEE Trans. Soft. Eng
11 11 Nov. 1985.

2. Agile Manifesto www.agilemanifesto.org (08/17/2005)
3. Ahmed S et al. “Understanding Differences Between How Novice & Experienced Design-

ers Approach Design Tasks”; Res. Eng. Design 14, 1-11 2003.
4. Bach, J. The Challenge of "Good Enough Software", American Programmer, Oct, 1995
5. Curtis B, et al. “A Field Study of the Soft. Des. Process for Large Systems”, Comm. ACM,

31 11 Nov. 1988.
6. Demarco T, et al. Peopleware; 2nd Ed. Dorset House Pub. Co. NY; 1999.
7. Gasson S; “Framing Design: A Social Process View of Information System Develop-

ment”; Proc. Int. Conf. Information Systems, Helsinki Finland, 224-236; 1998.
8. Guindon R; “Designing the Design Process” HCI 5, 305-344; 1990.
9. Guindon R; “Knowledge Exploited by Experts During Software Sys. Design”; Int. J. Man-

Mach. Stud. 33, 279-304; 1990.

20 C. Zannier and F. Maurer

10. Herbsleb J, et al. “Formulation and Preliminary Test of an Empirical Theory of Coord.in
Soft. Eng.”; Eur. Soft. Eng. Conf./ACM SIGSOFT Symp. Found. Soft. Eng; 2003.

11. Highsmith J; Agile Project Management; Add-Wesley; 2004
12. Highsmith J; Agile Software Development Ecosystems; Addison-Wesley; 2003;
13. Klein G et al; “Critical Decision Method for Eliciting Knowledge” IEEE Trans. Sys, Man

and Cyber.; 19, 3, 1989.
14. Klein G; Sources of Power, MIT Press Camb., MA; 1998
15. Krippendorff; Content Analysis; V5 Sage Pub. Lond. 1980
16. Lipshitz R; “Decision Making as Argument-Driven Action”; In: Klein et al, Decision Mak-

ing in Action; NJ: Ablex Pub. Corp.; 1993.
17. Luce et al Games & Decisions John Wiley & Sons NY 1958
18. Malhotra et al “Cognitive Processes in Design” Int. J. Man-Mach. Stud 12 119-140 1980
19. Orasanu J et al; “The Reinvention of Decision Making”; In: Klein et al, Decision Making

in Action; NJ Ablex; 1993.
20. Patton M.Q; Qualitative Research & Evaluation Methods 3rd Ed.; Sage Pub, CA; 2002.
21. Rugaber S et al. “Recognizing Design Decisions in Programs” IEEE Software; 1990.
22. Simon H; “The Structure of Ill Structured Problems”; AI V4, 181-201; 1973
23. Sonnetag S; “Expertise in Professional Soft. Design” J. App. Psych. 83 5 703-715 1998
24. Walz D.B, et al. “Inside a Software Design Team”; Comm. ACM, V.36 No.10 Oct 1993.
25. Yin, R.K; Case Study Research: Design & Methods 3rd Ed. Sage Publications, CA, 2003
26. Zannier C, et al.; “A Qualitative Empirical Evaluation of Design Decisions”; Wkshp on

Human & Social Factors of Soft. Eng.; ACM Press: 2005

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 21 – 31, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Software Development as a Collaborative Writing Project

Brian Bussell1 and Stephen Taylor2

1 Norwich Union Life, 60 Wellington Way, York YO90 1LZ
brian.bussell@norwich-union-life.co.uk

http://www.norwichunion.com
2 British APL Association, 81 South Hill Park, London NW3 2SS

editor@vector.org.uk
http://www.vector.org.uk

Abstract. Software describes an imagined machine. To be software, the
description must be executable, which means written so a computer can animate
it. Non-executable descriptions (specifications, designs, &c.) are instrumental to
this work; they are intermediate texts. We advance a model of software
development as the collaborative writing of a series of descriptions. We propose
the chief distinction of agile development to be the exclusion from this process
of the human translation of intermediate texts. We distinguish supported and
unsupported communication. We analyse the success of Extreme Programming
in terms of avoiding unsupported communication and prioritising feedback
from executable descriptions. We describe functional programming techniques
to construct notations that allow programmers and users to collaborate writing
executable system descriptions, collapsing distinctions between analysis,
design, coding and testing. We describe a metric of code clarity, semantic
density, which has been essential to the success of this work. We report the use
of these techniques in the Pensions division of Britain’s largest insurer, and its
effect on the business.

1 Introduction

In this paper we advance a view of software development in which similarities to
collaborative writing projects such as making movies or drafting legislation matter more
than resemblances to civil engineering. This view is grounded in professional
experience of writing software, in the mathematics of computer science, and in the
philosophy of linguistics. It is contrary in general to the conventional model of software
development, and in particular to what has become known as ‘software engineering’.

From it we derive radical development practices and report their use at Norwich
Union.

To establish common ground, we start with fundamentals.

2 Universal Turing Machines and Programs

The important characteristic of a computer is that it can be loosely thought of as a
Universal Turing Machine (UTM). Without software a computer is useful only as a

22 B. Bussell and S. Taylor

doorstop. Its real value is its ability to emulate the behaviour of other machines. The
applications we run on computers are representations and emulations of the behaviour
of machines.

Almost all machines emulated by computer applications are imaginary. While
early word-processing applications emulated and extended the behaviour of real
typewriters, modern word-processing applications now emulate machines that never
have been built and never will be. Mechanical computing reached its limits with
Babbage’s Differential Engine; he never completed his more ambitious Analytical
Engine. Our dreams exceed our abilities to press, cut and weld.

Babbage could not build his Analytical Engine with Victorian engineering and the
funds he could raise; his completed machine remained a dream. But with programmable
UTMs, we routinely emulate imaginary machines more complex than Babbage’s.

The key is the program. A program describes the behaviour of a machine in terms
that allow a UTM to animate the description. This is what programmers do – we write
beforehand (pro-gram) executable descriptions of machine behaviour.

A UTM, like the magical character in a folk tale, grants wishes. As in the folk
tales, accurately describing what you want turns out to be harder than it seems. Our
dreams are light on detail and have unforeseen consequences. Software developers are
the heirs of King Midas11.

3 Creative Writing and Translation

Here are two descriptions of a machine too complex for Babbage to have built.

mean=: +/ % # NB. arithmetic mean of a list of
numbers

The first description (+/ % #) is executable, and written in the J programming
language. The second description follows the NB. and is written in English. To a
reader of both languages, the descriptions are equivalent; that is, each translates the
other.

The first description can be animated with the help of a J language interpreter. A
J interpreter executes C code, which becomes a new (and lengthier) description of
the desired machine behaviour. A C compiler then composes an even lengthier
description in a chip’s instruction set. The chip is a UTM; animation can now
begin.

Instructions to a chip are the final form of software. Now consider where a
software development project starts; consider the following text.

1 “Dionysus, who had been anxious on Silenus’s account, sent to ask how Midas wished to be

rewarded. He replied without hesitation: ‘Pray grant that all I touch be turned into gold.’
However, not only stones, flowers, and the furnishings of his house turned to gold but, when
he sat down to table, so did the food he ate and the water he drank. Midas soon begged to be
released from his wish, because he was fast dying of hunger and thirst; whereupon Dionysus,
highly entertained, told him to visit the source of the river Pactolus, near Mount Tmolus, and
there wash himself. He obeyed, and was at once freed from the golden touch, but the sands of
the river Pactolus are bright with gold to this day.” [1].

 Software Development as a Collaborative Writing Project 23

Our competitors are beating us on delivery. Our process is too slow; we

just can’t get our goods out of the door fast enough. We need a new order-

processing system.

It contains the following description of a machine: a new order-processing system. In
its likely context – a senior-management conversation – it sufficiently describes the
solution to a business problem. The description carries for that conversation the right
three facts about the solution: its behaviour will be to process orders, it will involve a
computer, and it will have to be acquired.

This description is not executable. It corresponds to many executable descriptions
– to too many. Developing the system means writing an executable description of a
machine that solves the business problem.

Note that this development process is not translation. The application code and a
new order-processing system both describe the behaviour of an imaginary machine,
but they are not translations of each other.

We propose that agile and conventional models of software development are most
clearly distinguished by the inclusion or exclusion of human translation as a project
activity.

Put another way, conventional software development projects measure their
success by whether they have accurately translated a non-executable system
description into an executable one – does the program match the specification? Agile
projects ask only – have we solved the business problem?

Of course, no one attempts to write an executable translation of a new order-
processing system. Instead, analysts meet sponsors and write specifications. Specia-
lists read specifications and write design documents and data architectures. Analyst/
programmers write program specifications. And programmers either write program
documentation and translate it into code, or translate specifications into code and then
back into documentation. Thus the conventional model. We know that human
translation is included, because an ideal of the conventional model is to derive the
code from the program specification alone, or from the documentation alone.

4 Two Great Lies of Software Development

When ye sup with the Devil, use a long spoon. (Trad.)

There are two Great Lies of software development. The first is I can tell you what
we need. The second is I can tell you what it will take to build it. Both lies contain
enough truth to nourish illusion.

A new order-processing system is the first of a series of descriptions. Each
successive description expands its predecessor. The last and longest description is
composed in a chip’s instruction set; but the last several descriptions are all formal
equivalents (translations), produced without human intervention by compilers and
interpreters. Programmers make the last human contribution, by writing the first
executable description. The point to keep in mind is that from a new order-processing
system to chip instructions, is nothing but behavioural descriptions all the way
down.

24 B. Bussell and S. Taylor

The speaker of we need a new order-processing system will not enlarge greatly on
his description. He has competent staff to do that. Describing what you want
(specifying requirements) is understood to entail much discussion and analysis,
balancing of priorities, and consideration of foreseeable changes in the business. But
the underlying assumption is that it can be done. In most fields of activity, inability to
describe what you want is a reliable indicator of incompetence.

Let us entertain the contrary, and suppose the folk wisdom is right: imagining and
describing accurately a complex machine ‘from thin air’ is at least greatly more
difficult than it appears, and perhaps too difficult for practical purposes. Here is a
thought experiment.

Call the speaker of we need a new order-processing system the system’s sponsor.
Suppose the sponsor actually does know precisely how the system should behave. He
can give consistent answers to any question on the subject; he envisages its interfaces
to the user and to other systems, and understands the important implications. The
sponsor is ready to write a description of the imagined machine that requires only
translation into source code. Call this description the absolute specification.

How is he to write it? Plain English will not do; its imprecision and elegant
ambiguities disqualify it for the job. Formal notations are available for different parts
of the work: for example, UML for user interfaces; functional decomposition
diagrams. In principle, nothing prevents the sponsor learning these notations and
writing the absolute specification. But mastering them requires years of work. The
sponsor will not have done this; the premise is that he is a businessman.

5 Writing Software Without Programmers

Exceptions to this are important and instructive. In the 1980s spreadsheet applications
removed programmers from an entire field of software development. Using
spreadsheets is not considered programming, but Taylor recalls working on an
Australian government tender in the early 1990s in which the spreadsheets developed
in its support exceeded in complexity most software he had previously written.

The important contribution of spreadsheets, where used, is to remove the element
of human translation from software development. Microsoft has had some success in
extending this with Visual Basic, making possible for users a good deal of tinkering
with its products. Spreadsheet and Visual Basic users do not think of what they do as
programming, nor are they encouraged to; Microsoft promotes Visual Basic as a
‘productivity tool’.

We note here the bias in the usage of ‘programming’: what one person does for
another, not what one does for oneself. A professional programmer programs
machines for others to use.

Actuarial calculations provide solutions in the once stable but now fast-changing
insurance business. These calculations routinely exceed the descriptive powers of
spreadsheets. Actuaries have long written executable descriptions of their calcula-
tions. Bussell, an actuary, recalls writing them in AP L in the 1980s. In the Pensions
division he now directs, calculations are described either in APL, or by actuaries
writing direct in Mathematica.

Instructive examples can also be found in the financial markets, another field in
which the cost of delay has minimised or eliminated human translation in developing

 Software Development as a Collaborative Writing Project 25

software. Financial traders commonly either write their own software or seat
programmers in the trading room.

When I started in this business, every trader had a Visual Basic manual on
his desk; now it’s more likely to be a J2EE manual. [2]

In practice, competence in the business and in writing software coincide only
where the business requires mathematical skills. In consequence, highly abstract
executable notations such as AP L, A+, J, K, Q, R and S flourish primarily among
actuaries, financial traders and statisticians.

6 Notation as a Tool of Thought

In the thought experiment above we imagined our sponsor knew exactly how the
machine should behave. From this we saw the lack of a suitable notation in which to
write the absolute specification as a formidable, and probably an insuperable, obstacle.

But the premise itself is untenable. It supposes the sponsor has completely
imagined the desired machine, which is to say that he has an absolute specification ‘in
his head’.

A strong body of opinion, associated with Chomsky and Fodor [3], maintains such
a mental description entails mapping to some internally coded language. Even an
Andersonian realist would suppose such a description handled by the brain in the
same way that language is handled. We think and speak only what can be expressed
in language.

7. Wovon man nicht sprechen kann, darüber muß man schweigen2.

Wittgenstein’s later argument [5] against the possibility of private language further
restricts the scope of thought. We know languages only by sharing them. We think
only what can be expressed in languages shared with others. In studying a subject one
acquires new thoughts along with the vocabulary to express them. [6]

In his later argument, Wittgenstein also came to see that the relationship between
language and its referents is inexact, slippery and ambiguous; mediated by what he
called our language games. We can never find in our everyday languages the preci-
sion and completeness we aspire to in mathematical notation.

Well here again that don’t apply

But I gotta use words when I talk to you.

…

I gotta use words when I talk to you.

But if you understand or if you don’t

That’s nothing to me and nothing to you

We all gotta do what we gotta do

 T.S. Eliot/ “Fragment of an Agon”

2 7. Whereof one cannot speak, thereof one must be silent. [4].

26 B. Bussell and S. Taylor

7 Hubris and the Children of Dædalus

How can I tell you what I think,
till I’ve heard what I have to say?

 Anon.

The first Great Lie of software development has two parts: I know what I need and
I can tell you what it is. We have examined the difficulties of the second part while
assuming the truth of the first. Now we will show what is more important: the first
part is also false.

Whether writing novels, screenplays or software, we start with an incomplete
vision. It is only in the process of elaboration that we understand the implications of
our choices, and see, for example, that having let everything I touch turn to gold leads
to death by starvation. Had King Midas been granted a revision of his wish, Version 2
would have included a switch to turn transmutation on or off.

Some software has to run correctly on first use – ask NASA. Such software has to
be written without the benefit of feedback from use in the real world.

The legends of King Midas and Icarus [7] warn against hubris; that our dreams
have unintended consequences. In pursuing our dreams, we need feedback from the
world to understand their consequences. It was not the cautious craftsman Dædalus
who fell to earth, but his son – carried away by his dreams.

When, sensitive to the appearance of incompetence, we subscribe to the first Great
Lie and claim we know what is needed and that we can describe it, we set aside
warnings from our culture’s long tradition. We risk hubris rather than admit ignorance.

Even when we qualify the lie by allowing significant time to write and discuss the
description, we ignore Wittgenstein’s warnings about the slipperiness of language and
the importance of grounding language games in reality. In thick, formal specification
documents, thousands of pages of charts, tables and narratives, we detail the machines
we shall conjure. So many details, so much dreaming – and no feedback.

We assert what Wittgenstein would predict: little effective communication is
possible about purely imaginary machines.

8 Raiders of the Inarticulate

Because one has only learnt to get the better of words
For the thing one no longer has to say, or the way in which

One is no longer disposed to say it. And so each venture
Is a new beginning, a raid on the inarticulate

 T.S. Eliot/ “East Coker”

Extreme Programming (XP) shares this fear of hubris [8] and addresses it briskly.
XP teams begin by building the smallest system of any possible value [9] and use that
with the sponsor to conjure, explore and revise his dreams. Incremental development
treats knowledge as scarce and communication as uncertain.

Communication within XP projects reflects scepticism about its value divorced
from a running system. The sponsor’s representative sits with the programmers at all
times, to resolve immediately questions about the business values of different

 Software Development as a Collaborative Writing Project 27

behaviours. These questions can always be related to the behaviour of the running
system, for XP projects always have a running system. Small changes in behaviour
are delivered frequently, so their consequences can be explored piecemeal.
Incremental developers know that dreams turn easily into nightmares.

Everything is referred to the final human text, that is, the source code. There are no
intermediate texts for humans to translate into executable notation, and against which to
measure accuracy of the translation. Agile projects do not ask did we implement the
specification accurately? but have we solved the business problem? Such intermediate
texts as are written are destroyed after use; the running system is the starting point for
any discussion of change. All changes are changes to the running system.

In similar vein, for software quality and cross-training, XP programmers
collaborate upon the source code (pair programming) rather than talk or write about it.

Call communication, spoken or written, unsupported in the absence of its object.
Talk about a system, in its absence, is unsupported. Talk about source code, in its
absence, is unsupported.

Such talk is not cheap. Unsupported talk is unreliable and expensive.3
An engineer designing a machine minimises use of components that are unreliable

or expensive. XP teams use much less communication than the conventional model.
Nearly all of it is supported.

9 Shrinking the Circle

How can we use this view of software development to solve business problems faster?
The Pensions division of Norwich Union processes claims from a range of

products inherited through mergers and takeovers, and supported upon a range of
administrative systems. Processing the claims is relatively complex; when tackled
with word-processor scripts, spreadsheets and mainframe terminal emulators, claims
took about an hour to process. Clerks required six weeks training to begin handling
the simpler claims of their department, and six months to be able to handle all of
them. Cross-training took about three weeks, so departments were rarely able to help
each other balance work loads, and backlogs were common.

Regulatory and legislative changes are now relatively frequent, as are changes to
the administration of the business, and the organisation of the company. This
describes an environment changing so rapidly that no conventional software develop-
ment project to cut processing costs has ever been contemplated.

We have nonetheless been able to exploit insights gleaned from XP and apply
them with a team initially of two programmers. The system went into production use
after some months, and two years on, now processes as many pension claims as the
company’s core IT systems. It has halved the average processing time for claims,
slashed training time to days, and eliminated backlogs. The system is now supported
and developed by four programmers.

A key technique to the success of this has been programmers and users collabo-
rating on writing the source code.

Not all of it, by any means. But key business rules, previously enshrined in user
training and check lists, had appeared impractical to analyse in such an unstable
environment. For example, a 5-page check list described how to determine whether a

3 This is the subject of a forthcoming paper.

28 B. Bussell and S. Taylor

claim was liable to a certain penalty. An executable version of the rules was first
worked out with a test battery of examples, then refactored for clarity into its present
form, in which it is occasionally amended by the senior clerks and programmers
together. The complete rules fit on an A4 page, and are appended.

Programmers have made this possible by constructing local, domain-specific
executable notations. The vocabulary of these notations is drawn from the users’ talk
about the work. Our tiny team does not have an Onsite Customer; instead it works
among its customers. These notations constitute the shared languages required by
Wittgenstein and lauded by Whitehead.

By relieving the brain of all unnecessary work, a good notation sets it free

to concentrate on more advanced problems, and in effect increases the

mental power of the race. [...] By the aid of symbolism, we can make

transitions in reasoning almost mechanically, by the eye, which otherwise

would call into play the higher faculties of the brain. [...] It is a profoundly

erroneous truism, repeated by all copy-books and by eminent people when

they are making speeches, that we should cultivate the habit of thinking of

what we are doing. The precise opposite is the case. Civilisation advances

by extending the number of important operations which we can perform

without thinking about them. [10]

Constructing a notation is not the end of the task, but it brings the end near. Users
and programmers can now converge quickly on and verify a common understanding.
The notation enables them to avoid ambiguity; it is a “tool for thought” in the sense of
Iverson’s Turing Award lecture [11]. Because the notation is executable (and
interpreted), the running system animates the described behaviour in front of them.

Taylor describes a typical scenario with an expert user, S.

S comes and sits beside me, facing the system running in my development

environment. She has not written or spoken to me about the change she

contemplates. She begins by getting the system to do something she wants

changed: either crashing it, or displaying or printing something other than
what she wants. She can now point at the behaviour she wants changed. I

use my knowledge of the source to locate the rules controlling that

behaviour, and we trace execution, jointly examining how those rules are

expressed and applied. We then agree an amendment, which seems to

express what she intends, and resume execution. We try other examples,

explore implications and revise the rules until we’re satisfied the revision
seems to express what S contemplated. I save the revised version where

she can test and explore it further.

 Software Development as a Collaborative Writing Project 29

Working this way is insanely productive, because the system’s behaviour can be
revised without interrupting the conversation. If changes to the code took only an
hour, the process described above would cover days. As it is, analysis, design,
implementation and alpha-testing collapse into periods sometimes measured in
minutes. In the last two months of 2005 the team released over 200 changes to the
production system.

10 Semantic Density

Our ability to work at this speed depends on programmers and users collaborating on
the source code. This in turn depends upon the value of a metric we have dubbed
semantic density. [12]

Semantic density is the proportion of tokens in the source code that are drawn from
the users’ semantic domain; that is, the vocabulary they use to discuss the work. It
ranges between 0 and 1. We are able to achieve very high values because

 functional- and array-programming techniques, and judicious use of anonymous
lambdas, enable us to avoid defining terms (such as counters) outside the users’
semantic domains;

 languages derived from Iverson’s notation support a version of Church’s lambda
calculus, enabling us to define entire local vocabularies in a few lines of code;

 users ignore APL’s analphabetic glyphs, which have no impact on semantic
density.

11 Conclusion

A software development project imagines and describes a desired process. This is
difficult work, which has become no easier since King Midas tried it. The
unsupported communications and intermediate texts of software engineering do
little to help this work and a great deal to prolong it. Much XP practice can be
characterised as eschewing intermediate texts in favour of high-bandwidth
communication between sponsor and programmer, supported by feedback from a
running system. Functional programming techniques extend this by allowing
sponsor and programmer to collaborate on source code, and permit radical gains in
productivity. These techniques are in use in the Pensions division of Britain’s
largest insurer.

Acknowledgements

The authors thank Paul Berry, Chris Burke, Gitte Christensen, Romilly Cocking,
Roger Hui and Charlie Skelton for comment on a draft of this paper.

30 B. Bussell and S. Taylor

References

1. Graves, R. The Greek Myths, London, Folio Soc., 1996, p.263
2. Mark Sykes, Director, Global Markets Finance, Deutsche Bank, London addressing Kx

Systems User Meeting; see report in Vector, Vol.21., No.2 http://www.vector.org.uk/
archive/v212/kx212.htm

3. Fodor, J., The Modularity of Mind, MIT Press, Boston, 1983
4. Wittgenstein, L., Logische-Philosophische Abhandlung, Cambridge, 1922
5. Wittgenstein, L. Philosophical Investigations: German Text, with a Revised English

Translation Blackwell, Oxford, 2002
6. Taylor, S. “The Experience of Being Understood: on requirements specification as a

Wittgensteinian language game” http://www.5jt.com/articles.php?article=beingunderstood
7. Graves, R. ibid., p.291
8. Beck, K. Extreme Programming Explained: Embrace Change Addison-Wesley, Boston,

2000, p.165
9. Beck, K. ibid. p.131&ff.

10. Whitehead, A.N. An Introduction to Mathematics, p59, H. Holt & Co., London, 1911
http://www.headmap.org/unlearn/alfred/1.htm

11. Iverson, K.E. “Notation as a Tool of Thought” 1979 ACM Turing Award lecture,
Communications of the ACM, Vol.23, No. 8; see http://elliscave.com/APL_J/tool.pdf

12. Taylor, S.J. “Pair Programming With The Users”, Vector, Vol.22, No.1 http://www.
vector.org.uk/archive/v221/sjt221.htm

 Software Development as a Collaborative Writing Project 31

Appendix

A fragment of source code maintained jointly by programmers and users.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 32 – 42, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Comparative Analysis of Job Satisfaction in Agile
and Non-agile Software Development Teams

Grigori Melnik and Frank Maurer

Department of Computer Science, University of Calgary
Calgary, Alberta, Canada

{melnik, maurer}@cpsc.ucalgary.ca

Abstract. Software engineering is fundamentally driven by economics. One of
the issues that software teams face is employee turnover which has a serious
economic impact. The effect of job dissatisfaction on high turnover is
consistently supported by evidence from multiple disciplines. The study
investigates if and how job satisfaction relates to development processes that
are being used and the determinants of job satisfaction across a wide range of
teams, regions and employees. A moderate positive correlation between the
level of experience with agile methods and the overall job satisfaction was
found. The evidence suggests that there are twice as many members of agile
teams who are satisfied with their jobs (vs members of non-agile teams). The
ability to influence decisions that affect you, the opportunity to work on
interesting projects, and the relationships with users were found to be statistic-
cally significant satisfiers.

1 Introduction

Economics is an important dimension of software engineering and it cannot be
ignored. One of the issues that software teams face is voluntary turnover which has a
serious economic impact. DeMarco and Lister’s early work on peopleware [8] reveals
a strong impact of people onto the success of software development projects. In this
paper, we analyze if the development process used has an impact on job satisfaction.
Concretely, we investigate agile processes and compare them to the overall industry.

Organizational psychology defines job satisfaction as a “present-oriented evalua-
tion of the job involving a comparison of an employee’s multiple values and what the
employee perceives the job as providing” [12]. Even though the effect of job
satisfaction on employee’s performance and productivity (happy teams = productive
teams) is disputed and considered by some organizational psychologists as a myth
[19], [7], one particular discordant association – between job satisfaction and
volunteer turnover (i.e. perceived desirability of movement) – has been consistently
supported by evidence. Furthermore, job dissatisfaction is one of the most important
confirmed antecedents for the high volunteer turnover [14], [17], [16]. As such it has
a considerable economic effect on organizations, individuals and society1.

1 Although a positive economic effect can be achieved by the individual (i.e. increased salary),

this study focuses on the societal macro aspects of the turnover, which are typically negative.

 Comparative Analysis of Job Satisfaction 33

Projecting this onto the IT industry, analogous observations can be made. However
comparatively less work has been done in this direction. For example, in a study of
software development environments, Burk and Richardson showed that “job
satisfaction relates more closely to an employee’s choice to stay with the organization
than does financial reward” [6]. Estimates of turnover costs in IT industry vary. For
example, studies put turnover costs as much as 70-200% [10] and 150-200% of that
employee’s annual salary [15]. The cost of employee loss includes advertising, search
fees, interview expenses (air fare, hotel etc.), manager’s and team members’ time
spent interviewing, training and ramp up, overload on team, including overtime to get
work done during selection and training of replacement; lost customers, lost contracts
or business, lowered morale and productivity, sign-on bonus and other perks, moving
allowance, and loss of other employees [10]. Boehm extensively discusses factors of
software developers’ motivation and satisfaction and their various effects in the
seminal Software Engineering Economics work [4].

Agile methods – human-centric bodies of practices and guidelines for building
software in unpredictable, highly-volatile environments – are gaining more popularity
now. They, supposedly, increase, among other things, job satisfaction by improving
communications among team members and with the customer, promoting continuous
feedback, and allowing developers to make decisions that effect them.

Agilists claim that agile methods make not only the customer more satisfied but
also the members of the development team. If that is the case, then the improved job
satisfaction may lead to a lower turnover, which in turn results in the economic
benefits discussed earlier. However, most of what we know about job satisfaction in
agile software development teams is anecdotal [5]. As agile methods increase in their
popularity, the benefits of higher job satisfaction mentioned have been: increased
individual and team morale [11], motivation [1], performance [18], productivity [18]
and retention [11], [18], [3]. With the exception of a single study by Manaro et al
[13], all claims were based on anecdotes and required a leap of faith. However, if we
are to really understand the impact of agile methods on employees, teams and
organizations, we need to go beyond anecdote and determine employee satisfaction
empirically. In the present study, we set out to investigate how employees in agile and
non-agile teams perceive the quality of their work life. By restricting our attention to
job satisfaction, we can sharpen the understanding of its multiple determinants and
those aspects of software engineering that are most valued by the individual.

2 Research Questions, Context and Method

To structure our research, we followed the Goal/Questions/Metrics GQM) Paradigm
[2]. Table 1 provides a summary of the goals, research questions and metrics. We also
include our hypotheses and testing strategies. The goal of our research is to
understand if and how job satisfaction relates to development processes that are being
used and the determinants of job satisfaction across a wide range of teams, regions
and employees based on the type of development process used. Consequently, the
main research question is whether agile methods lead to higher, similar, or lower job
satisfaction rates in software development teams in comparison to the IT industry in

34 G. Melnik and F. Maurer

Table 1. Research structure: Goal/Questions/Metrics with hypotheses and tests strategies

Goal Purpose
Issue
Object
Viewpoint

Investigate
the job satisfaction of individual team members related to
software development process type adopted
from the view point of agile, non-agile and general IT industry

Question Q1

Metrics M1

Null Hypothesis H01

Test T1

Do members of agile software development teams experience higher, similar, or lower
job satisfaction than members of non-agile teams?
Satisfaction ratings by respondents categorized by the levels of adoption/experience
with agile methods (from none to 5+ years); Spearman’s measure of correspondence
No relationship exists between the level of agile methods adoption and the overall job
satisfaction of the individual
Two-tailed Chi-square test

Question Q2

Metrics M2

Null Hypotheses H’02

H’’02

Test T2

Are the rates of job satisfaction expressed by members of agile teams higher, similar, or
lower than of IT industry in general?
Percentage difference of satisfaction ratings; Spearman’s measure of correspondence
The levels of overall job satisfaction of respondents from Agile group and General IT
group are the same
The levels of overall job satisfaction of respondents from Non-agile group and General
IT group are the same
Two-tailed Chi-square test

Question Q3

Metrics M3

Null Hypotheses H’03

 H’’03

Test T3

Are there differences in perceptions based on the role (manager, worker, consultant)?
Percentage differences of satisfaction ratings
Levels of satisfaction by managers and workers are the same in agile teams
Levels of satisfaction by managers and workers are the same in non-agile teams
Two-tailed Chi-square test

Question Q4

Metrics M4

Null Hypotheses H04-s

satisfiersjobs
Test T4

What are the relationships between the level of experience with agile methods and
individual job satisfiers (Table 2)
Ratings for each satisfier; Spearman’s measure of correspondence
No relationship exists between the level of experience with agile methods and satisfiers

Two-tailed Chi-square test

general. An additional objective is to discover and describe relationships between
selected job satisfiers (see Table 2) and the overall job satisfaction. We distinguish job
satisfiers into three groups: internal, financial and external. Financial and external
satisfiers are called “factors of hygiene” [9]; for these factors “act in a manner
analogous to the principles of medical hygiene”. When these factors deteriorate to a
level below that which the employee considers acceptable, then job dissatisfaction
ensues. However, the reverse does not hold true. It is widely recognized that “when
the job context can be characterized as optimal we will not get dissatisfaction, but
neither will we get much in the way of positive attitudes. The factors that lead to
positive job attitudes do so because they satisfy the individual’s need for self-
actualization at the job” [9], [4].

Additionally, we analyze satisfaction outcomes based on the employee role:
manager (team lead, project lead, scrum master), worker (developer, analyst, tester,
architect, user experience designer, security specialist etc.) and consultant (process
improvement consultant, coach, facilitator) and the extent of agile process adoption
(none, <6 months, 6-12 months, 1-2 years, 2-3 years, 3-4 years, 4-5 years, >5
years).

For our study, we chose quantitative survey analysis and comparative analysis as our
research procedure. Two self-administered Web-based surveys were used as a research
instrument. One survey – denoted as the “main survey” – consisted of 17 questions of

 Comparative Analysis of Job Satisfaction 35

both quantitative (on Likert summated scale) and qualitative (open-ended) natures. It was
administered by the authors of this paper. We recognized the multidisciplinary nature of
our study (among software engineering, organizational psychology, sociology, and
economics) and, therefore, formulated the questions in consultation with a specialist in
organizational psychology. The second survey used (henceforth referred to as
“supplementary survey”) was a more generic IT Job Satisfaction Survey conducted by
the ComputerWorld magazine (www.computerworld.com/careertopics/careers/
exclusive/jobsatisfaction2003). This survey contains perceptions of a broad body of IT
managers and workers (from CIO to help desk operator) employed at a wide range of
industries and company sizes. The ComputerWorld questionnaire focused on job satis-
faction only and was agnostic to the development process used; whereas our main survey
was designed having different development processes (agile vs. non-agile) in mind. In
our main survey, we included several questions that were identical (verbatim) to the
questions of the supplementary survey. The objective for using these two surveys was to
enable comparative analysis of the results: Agile vs General IT and Non-agile vs. General
IT. Notice that both surveys were administered on the Web and during the same year.

In this paper we only discuss a subset of our findings based on the responses to
questions dealing exclusively with overall job satisfaction and its determinants
(satisfiers). Analysis of the data related to stress, desirability of movement, and
relationship with management is left out.

Table 2. Job satisfiers

1. Opportunity for advancement
2. Ability to influence decisions that affect you
3. Ability to influence day-to-day company success
4. Opportunity to work on interesting projects

internal

5. Salary
6. Connection between pay & performance
7. Job security
8. Workload

financial

9. (Interpersonal) relations with IT peers
10. Relations with users (customer)

external

 “factors of hygiene”

3 Data Sources

The target population for the main study is the group of software engineering
professionals. The target population for the supplementary study is wider and includes
IT professionals in general. Both surveys used self-selected Internet samplings.

Table 3. Suvey samples

Survey Administered by Ncomplete responses Npartial responses Ntotal
Main Authors 459 286 756
Supplementary ComputerWorld 936 - 936

36 G. Melnik and F. Maurer

Table 4. Main survey sample distribution by regions

Africa Asia
Australia &

New
Zealand

Europe
Latin

America &
Caribbean

Middle
East

North
America

South
America

3 35 10 135 3 2 253 18

1% 8% 2% 29% 1% 0% 55% 4%

Invitations in four languages (English, French, German, Cantonese) were posted to
the most active newsgroups, mailing lists and wikis (total 51) specialized in software
engineering, in general; as well as via the C2, Agile Alliance, DSDM Consortium,
Canadian Agile Network. The limitations of such sampling are discussed in Section 5.
Details of the sample distributions are presented in Tables 3 and 4.

4 Findings: Analysis and Discussion

4.1 Overall Satisfaction of Employees of Agile vs. Non-agile Teams

We organized our independent variable (level of experience with agile methods) in an
ordered dataset as follows: 0=“you don’t know what agile methods are”, 1=”you
haven’t practiced agile but are interested”, 2=”<6 months”, 3=”6-12 months”, 4=”1-2
years”, 5=”2-3 years”, 6=”3-4 years”, 7=”4-5 years”, 8=”>5 years”.

The results of the Chi-square significance test for the relationship between the level
of experience with agile methods and overall job satisfaction is presented in Table 6.
It reveals a statistically significant relationship at the level <.0001. Hence, hypothesis
H01 (No relationship exists between the level of agile methods adoption and the
overall job satisfaction of the individual) is rejected. In order to examine the nature of
this relationship, we performed Spearman’s correlation test and measured the
correspondence of rank ordering. To deal with non-responses, we employed pairwise
deletion. The results of Spearman’s rho calculation show a moderate positive
correlation between the level of experience with agile methods and the overall job
satisfaction (rhos = 0.35, 95% CI = [0.26, 0.42], 2-tailed p<0.0001, N=448). In other
words, those who, reportedly, practiced agile for longer, perceived their overall job
satisfaction higher. This is consistent with the claims of agilists.

4.2 Overall Satisfaction of Agile and Non-agile Teams vs. General IT Industry

The second research question we address is whether the rates of overall job
satisfaction expressed by members of agile teams (group A) and non-agile teams
(group B) are higher, similar, or lower than of IT professionals in general (group C).
Figure 1 illustrates the perception differences about overall job satisfaction.

Comparing percentage differences between IT in general and agile teams, several
important observations can be made: IT professionals in general are:

 11 times more likely to be “very dissatisfied” compared to agile team members;
 three times more "somewhat dissatisfied";
 50% more indifferent ("neither satisfied nor dissatisfied");
 almost twice as few "somewhat satisfied";
 almost twice as few "very satisfied".

 Comparative Analysis of Job Satisfaction 37

11.0%

7.6%

25.0%

29.8%

8.5%

11.0%

21.4%

7.9%

35.0%

31.3%

53.2%

18.0%

9.9%

29.4%

0.9%

IT General
(supplementary

study)

Non-agile
(main study)

Agile
(main study)

Very dissatisf ied

Somew hat dissatisified

Neither satisfied nor
dissatisf ied

Somew hat satisf ied

Very satisf ied

Fig. 1. Overall job satisfaction by groups: (A) members of agile teams (N=316); (B) members
of non-agile teams (N=131); (C) IT professionals in general (N=936)

Comparing responses of members of agile and non-agile teams, similar trends
emerge, but they are more acute:

 8 times more very “very dissatisfied” individuals in non-agile teams;
 3.5 times more “somewhat dissatisfied”;
 almost three times more indifferent ("neither satisfied nor dissatisfied");
 almost twice as few “somewhat satisfied”;
 three times as few “very satisfied”.

Table 5 contains results of pair-wise chi-square tests for the set of hypotheses H02.
From the calculations, we reject only H’02 . Thus, there exists a relationship between
overall job satisfaction and practice of agile methods (Agile or General IT). H’’02

cannot be rejected, at a sufficiently small alpha level (0.05) so no strong conclusion
regarding the relationship between overall job satisfaction and the group of non-agile
and General IT respondents can be made.

Table 5. Chi-square test for Hypothesis H01 (N=448)

 Overall Satisfaction

Level of experience with
agile methods

Very
dissatisfied

Somewhat
dissatisfied

Neither
satisfied nor
dissatisfied

Somewhat
satisfied

Very
satisfied Total

1 6 10 13 4 34 Don’t know what
agile methods are (0.9) (4.8) (4.3) (15.8) (8.2)

6 30 22 26 10 94 Haven’t practiced
agile but interested (2.5) (13.2) (12.0) (43.6) (22.7)

< 6 months 1 3 4 20 10 38
 (1.0) (5.3) (4.8) (17.6) (9.2)

6 months – 1 year 1 9 5 47 22 84
 (2.3) (11.8) (10.7) (39.0) (20.3)

1 – 2 years 2 9 7 46 18 82
 (2.2) (11.5) (10.4) (38.1) (19.8)

2 – 3 years 0 5 7 27 16 55
 (1.5) (7.7) (7.0) (25.5) (13.3)

3 – 4 years 0 1 1 14 13 29
 (0.8) (4.1) (3.7) (13.5) (7.0)

4 – 5 years 1 0 0 3 8 12
 (0.3) (1.7) (1.5) (5.6) (2.9)

> 5 years 0 0 1 12 7 20
 (0.5) (2.8) (2.5) (9.3) (4.8)

Total 12 63 57 208 108 448

χ2 statistic 104.67 df = 32 p <0.0001

38 G. Melnik and F. Maurer

4.3 Overall Satisfaction by Job Roles

We examined the rates of satisfaction by roles (manager, worker and consultant)
(Table 6). In addition, the main survey included a specific question that was conditionally

Table 6. Tests for relationships between levels of overall job satisfaction of employees-
members of agile teams, non-agile teams and IT in general

 Non-agile General IT

Agile

2= 80.96
N=447

p<0.0001
null hypothesis rejected

rhos = 0.39
moderate positive

association

2= 95.63
N=1,252
p<0.0001

null hypothesis rejected

rhos = 0.26
moderate positive

association

Non-
agile

—

2= 17.15
N=1,067

p= 0.0018
null hypothesis
not rejected

rhos = 0.05
no association

displayed to the respondents who identified themselves as those who practiced agile at
the time of taking the survey. We explicitly asked to rate individual’s current
experience in an agile team in comparison to the previous experiences of working in a
non-agile team. The results are in Table 8. Managers of the teams who adopt agile are
exceptionally positive about them (92% of “very satisfied” or “somewhat satisfied”).
This is an indication that agile methods are not just a programmer-oriented
movement, as some may believe. Workers (including developers and specialists)
exhibit also a positive trend (80% of “very satisfied” or “somewhat satisfied” –
highlighted in green in Table 7) though there are about 12% of those who are not.
Majority of them have been practicing agile for 6-12 months. Further analysis of the
comments provided by these dissatisfied agile workers reveal some of the reasons for
dissatisfaction. One person indicated “office politics, company movement to offshore
developers, incompetent executives” as the basis for her low satisfaction ranking;
while another one blamed “little real project development work” available. Several
individuals indicated that they were a part of a small agile team (<10) within a larger
non-agile organization and, in two cases, “management resisted agile” while the
developer team “tries to sneak it in”. There was one sentiment that was related to the
IT crash and not agile methods per se. The person complained about working more
hours leading to a lower net income – this is consistent with some of the sentiments of
professional in General IT group observed in the results of the supplemental study. On
the other hand, the group of workers who have not practiced agile but are interested in
trying them in their organizations is largely dissatisfied with their current jobs (40%)
or indifferent (27%) (highlighted in red in Table 7). Consultants, as expected, are

 Comparative Analysis of Job Satisfaction 39

extremely satisfied with agile methods. One data point in this category seems to be an
outlier (a Telco consultant with <1 year prior experience with agile methods; who
now follows a more Tayloristic process; the person provided no additional
comments). Separating them from other subgroups ensures that no consultant bias is
present in our analysis.

Table 7. Overall job satisfaction by job roles and levels of agile experience (N=482)

 Overall Satisfaction

Role
Level of experience with
agile

Very
dis-

satisfied
Somewhat
dissatisfied

Neither
satisfied nor
dissatisfied

Some-
what

satisfied
Very

satisfied
Grand
total

Manager Practice agile now

2
3%

3
5%

39
60%

21
32%

65
100%

Do not know what agile
methods are

1
17%

1
17%

1
17%

3
50%

6
100%

Haven’t practiced but
interested in trying

1
9%

3
27%

1
9%

4
36%

2
18%

11
100%

Have practiced before but
not now

2
33%

2
33%

2
33%

6
100%

Have tried agile in
training environment

1
25%

1
25%

1
25%

1
25%

4
100%

Worker Practice agile now
3

1%
25

11%
19

8%
121

51%
67

29%
235

100%

Do not know what agile
methods are

5
20%

6
24%

10
40%

4
16%

25
25%

Haven’t practiced but
interested in trying

5
7%

24
33%

20
27%

19
26%

5
7%

73
100%

Have practiced before but
not now

4
13%

8
27%

4
13%

13
43%

1
3%

30
100%

Have tried agile in
training environment

2
14%

3
21%

5
36%

2
14%

2
14%

14
100%

Consultant
Practice agile now

1
9%

5
45%

5
45%

11
100%

Have practiced before but
 not now

1
100%

1
100%

Have tried agile in
training environment

1
100%

1
100%

Table 8. Comparative satisfaction rankings of agile vs non-agile environments by respondents
who practice agile (by roles) (N=384)

Compared to your other experiences of working in a non-agile team,

how would you rate your current job now?

Role Much Better Better Similar Worse Much Worse Grand Total

Manager
39

49%
28

35%
8

10%
4

5%
79

100%

Worker
114

39%
109

37%
47

16%
16

5%
6

2%
292

100%

Consultant
8

62%
3

23%
1

8%
1

8%
13

100%

Grand Total
161

42%
140

36%
56

15%
20

5%
7

2%
384

100%

4.4 Job satisfaction Factors

In order to answer the forth question of our study on whether there exist relationships
between the level of experience with agile methods and individual job satisfiers

40 G. Melnik and F. Maurer

(identified with the help of an organizational psychologist and listed in Table 2), we
performed both Chi-square and Spearman’s correlation tests for each of them. The
results are summarized in Table 9. The relationships of the level of agile experience
and ability to influence decisions that affect you, opportunity to work on interesting
projects, and relationships with users were most strongly positive; while the
relationships with workload satisfaction, opportunity for advancement, and ability to
influence day-to-day company’s success were moderately strong but, nevertheless,
statistically significant at level p<0.0001.

Table 9. Relationships between the level of agile experience and individual job satisfiers
(N=481, df=36, p<0.0001)

 Satisfiers (as per Table 2)

Opportu-
nity for

advance-
ment

Ability to
influence
decisions
that affect

you

Ability to
influence

day-to-day
company
success

Opportu-
nity to work

on
interesting

projects

Salary

Connection
between
pay &

performance

Job
security

Work-
load

Relations
with IT
peers

Relations
 with users/
customers

χ2 79.92 103.24 84.05 99.18 45.2
8

63.96 64.34 67.42 59.43 88.82

rhos 0.22 0.32 0.28 0.32 0.06 0.17 0.06 0.23 0.26 0.31
rel. moderate moderate moderate moderate none weak very weak moderate weak moderate

5 Caveats and Limitations

Among this study’s main limitations is the use of self-selected sample. The way how
the study was distributed (online) might have created a selection bias – an argument
can be made that many developers in the industry do not check the resources were the
survey invitations were sent to. The question that matters, however, is whether self-
selected participants of our main survey and the supplementary ComputerWorld
survey are representative of members of the target populations. We hope that it is the
case: the large sizes of the samples and the breadth of the countries and organization
sizes help to mitigate the risk of non-representation. All in all, we believe that our
sample does not bias our significance tests substantially. Another potential caveat –
ambiguity of the questions – was addressed by validating the questionnaire with two
software engineers and one organizational psychologist. In addition, there is a chance
of the same individual responding to both surveys. However, even if this is a case, the
large size of samples compensates for this. One last caveat that we should mention is
the fact that we are only looking at the start of the chain: development process job
satisfaction voluntary turnover economic losses. We rely on interdisciplinary
research to make the rest of derivations. Undoubtedly, complex relationships will
emerge and those are subjects of our future studies.

6 Conclusions and Future Plans

Our research evaluated the relationship between development process and overall job
satisfaction. It revealed that relationship to be statistically significant at p<0.0001 and
the existence of a positive correlation between the level of experience with agile
methods (from none to 5+ years) and satisfaction. Comparative analysis of the way

 Comparative Analysis of Job Satisfaction 41

agile teams and general IT professionals in the industry perceive their work environ-
ments revealed significantly higher rates of satisfaction by agile team members. In
addition, we found not only workers but managers of agile teams are overwhelmingly
satisfied with their jobs and even ten points more so. This is a clear indication that
agile methods are not just a programmer-oriented movement. Lastly, it is important to
recognize the complex nature of job satisfaction as no single factor usually effects
satisfaction by itself. Therefore, an investigation of the relationship between the level
of agile experience and individual job satisfiers was undertaken. It found the three
strongest relationships were the ability to influence decisions that affect the
individual, the opportunity to work on interesting projects, and the relationships with
users/customers. In our future work, we’ll analyze perceived desirability of movement
and work stress.

Acknowledgments

Authors gratefully recognize: Dr. Theresa Kline for reviewing the original question-
naire, Dr. Harold Stolovitch and Dr. Steven Condly for discussions on the myth of
“happy teams = productive teams”, Dr. Hakan Erdogmus for reviewing our findings
and commenting on the manuscript, and all professionals who responded to the
surveys. The research is partially supported by NSERC and iCore.

References

[1] Asproni, G. “Motivation, Teamwork, and Agile Development”. Agile Times, IV(1): 8–15,
2004.

[2] Basili V. ”Applying the Goal/question/metric Paradigm in the Experience Factory.” In
Fenton et al. (Eds.) Software Quality Assurance and Measurement: A Worldwide
Perspective, Ch.2, International Thomson Computer Press: 21-44, 1996.

[3] Beck, K. On Turnover in XP Teams. In Dynabok. Online:
http://www.computer.org/SEweb/Dynabook/WhatIs2.htm

[4] Boehm, B. Software Engineering Economics, Prentice Hall, 1981.
[5] Boehm, B., Turner, R. Balancing Agility and Discipline: A Guide for the Perplexed.

Addison-Wesley: Reading, MA, 2003.
[6] Burk, L., Richardson, J., Latin, L. “Conflict Management in Software Development

Environments”. Proc. PNSQC 2000 (online): 298-357, 2000.
[7] Condly, S., Melnik G. Personal correspondence. February 2005.
[8] DeMarco, T., Lister, T. Peopleware : Productive Projects and Teams, 2/e. Dorset: 1999.
[9] Herzberg, F. et al. The Motivation to Work, 2/e. Wiley: New York, NY, 1993.

[10] Kaye, B., Jordan-Evans, S. “Retention: Tag, You’re It! How to Build a Retention
Culture”. Training & Development, April 2000: 29 –34, 2000.

[11] Larson, D. “Team Agility: Exploring Self-Organizing Software Teams”. Agile Times,
Vol. IV: 22–25, 2004.

[12] Locke, E. “The nature and consequences of job satisfaction.” In Dunnette, M (ed.)
Handbook of Industrial and Organizational Pscychology. Rand McNally: Chicago, IL,
1976.

[13] Manaro, K. et al. “Empirical Analysis on the Satisfaction of IT Employees Comparing
XP Practices with Other Software Development Methodologies”. Proc. XP 2004, LNCS
3092, Springer Verlag,: 166–174, 2004.

42 G. Melnik and F. Maurer

[14] March, J.G., Simon, H.A. Organizations. Wiley: New York, 1958.
[15] Meta Group. IT Labour Report. Online

http://www.itaa.org/workforce/resources/articles.htm.
[16] Mobley, W. Employee Turnover: Causes, Consequences, and Control. Addison-Wesley:

NY, 1982.
[17] Pettman, D. “Some factors influencing labour turnover: A review of the literature.”

Industrial Relations J., No.4: 43-61, 1973.
[18] Schiel, J. “Improving Employee Skills Through Scrum”. Agile Times, Vol. VII: 37–40,

2005.
[19] Stolovitch, H., Melnik, G. Personal correspondence. February 2005.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 43 – 52, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Investigating the Impact of Personality Types on
Communication and Collaboration-Viability in Pair

Programming – An Empirical Study

Panagiotis Sfetsos1, Ioannis Stamelos1, Lefteris Angelis1, and Ignatios Deligiannis2, *

1 Department of Informatics, Aristotle University,
54124 Thessaloniki, Greece

sfetsos@it.teithe.gr, {stamelos, lef}@csd.auth.gr
2 Department of Information Technology, Technological Education Institute,

54101 Thessaloniki, Greece
igndel@it.teithe.gr

Abstract. This paper presents two controlled experiments (a pilot and the main
one) investigating the impact of developer personalities and temperaments on
communication, collaboration-pair viability and ultimately effectiveness in pair
programming. The objective of the experiments was to compare pairs of mixed/
heterogeneous developer personalities and temperaments with pairs of the same
personalities and temperaments, in terms of pair effectiveness. Pair effectiveness
is expressed in terms of pair performance, measured by communication, velocity,
productivity and customer satisfaction, and pair collaboration-viability measured
by developers’ satisfaction, knowledge acquisition and participation (collabora-
tion satisfaction ratio, nuisance ratio, voluntary or mandatory preference, and
driver or navigator preference). The results have shown that there is significant
difference between the two groups, indicating better communication and collabo-
ration-viability for the pairs with mixed personalities/temperaments.

1 Introduction

Up to now, pair programming as an intensely social and collaborative process [3], has
been faced by organizations and managers as a rough technical process (not taking into
consideration the human factors [16, p. 17]). But as in any software process, there exist
human factors that can not be easily identified and understood well enough to be con-
trolled, predicted, or manipulated. In pair programming although the impact of devel-
oper personalities on communication and collaboration has been recognised as the
most critical success factor [3, 7, 10], it has not yet been investigated. We consider
pairs as adaptive ecosystems (based on Cockburns’ Team Ecosystems as described in
[7]), in which the successful implementation of the assigned roles and tasks primary
depend on developer personalities and temperaments. They are adaptive because
through pair rotations, developers can create, learn and respond to change. In these
adaptive ecosystems the overall development activity becomes a joint effort, a function

* This work is funded by the Greek Ministry of Education (25%) and European Union (75%)

under the EPEAK II program “Archimedes ”.

44 P. Sfetsos et al.

of how paired developers communicate, interact and collaborate to produce results.
However, different personalities express different natural preferences on communica-
tion, information and knowledge handling and sharing, decision making, and problem
solving [7, 10]. Cockburn states that only developers with different personalities and
with the same experience, if effectively combined, can minimize the communication
gap [7]. This means that organizations and managers must utilize processes which first
identify and understand developers’ personalities and then capitalize on their potential
talents and strengths, effectively combining them. Theory on pair programming does
not delve in such issues. The way developers’ personality and temperament types and
their assigned roles, either pair1 or functional2, must be matched, has not been ade-
quately investigated. Developer compatibility in pair programming is empirically
investigated only in one study [11]. But, there is still no answer to the following impor-
tant research question: Do developer personalities and temperaments affect pair effec-
tiveness and more specifically do mixed/heterogeneous developer personalities and
temperaments affect pair effectiveness and especially communication, collaboration
and pair viability?

In order to answer this research question and Cockburn’s claims, we conducted
two experiments. In both experiments pair effectiveness is described with the same
terms as the effectiveness of a team [17] (including communication and collaboration-
pair viability variables). Eighty four undergraduate students from the 4th semester of
the SE course participated in the experiments separated randomly into two groups of
pairs according to their personality and temperament inventories. The Keirsey Tem-
perament Sorter test [12] was used to identify and interpret students’ personalities and
temperaments in a separate session. Students in both experiments designed, coded and
tested in Java two tasks on the well known experiment object, the Cockburn’s Re-
sponsibility Driven coffee machine code [6]. The results of both experiments have
shown statistically better differences for pairs with mixed/heterogeneous personalities
and temperaments, i.e. they communicated better, needed less time to complete their
assignments, were more effective (better grades) and produce higher quality code
(better scores in acceptance tests). The results of questionnaires verified findings
indicating greater member’s satisfaction, knowledge acquisition and participation
(collaboration-pair viability) for the pairs with mixed personalities and temperaments.

The remainder of this paper is organized as follows. Section 2 describes the identi-
fication of the students’ personalities and temperaments. Section 3 describes the ex-
periments and in section 4 we draw our conclusions and summarize our findings.

2 Identifying Personalities and Temperaments

The two widely used tools to assist in the identification of personality and tempera-
ment types are the Myers-Briggs Type Indicator (MBTI3) [13] and the Keirsey Tem-
perament Sorter (KTS4) [12]. The MBTI, a 94-item questionnaire, is focused on four

1 Roles that developers must undertake into pair, usually informally assigned (i.e. leader, mentor).
2 Roles defined by the individual’s technical skills and knowledge (i.e. tester).
3 Myers-Briggs Type Indicator and MBTI are registered trademarks of the Myers-Briggs Type

Indicator Trust.
4 see http://keirsey.com/cgi-bin/keirsey/kcs.cgi.

 Investigating the Impact of Personality Types 45

areas of opposite behavior preferences, forming sixteen different personality types. It
is used to identify quickly where people get their energy, how they gather informa-
tion, how they make decisions, and which work style they prefer. The four pairs of
preferences are: Extroverting (E) and Introverting (I), Sensing (S) and iNtuiting (N),
Thinking (T) and Feeling (F), and Judging (J) and Perceiving (P). The KTS, a 70-item
questionnaire, classifies the sixteen personality types into four temperament types:
Artisan (SP), Guardian (SJ), Idealist (NF), and Rational (NT). We used the hardcopy
of the Keirsey Temperament Sorter to identify and interpret the personality invento-
ries of the participants. The distribution of the most numerous obtained personality
types, for the students used in the experiments, is shown in Table 1. In the same table
the distribution of the four temperaments in the population is also shown.

Table 1. Top four personality types and temperament types for students

Personality Type Percent (%) Temperament Type Percent (%)
ESTJ 21.4 Artisan (SP) 10.0
ISTJ 20.0 Guardian (SJ) 60.0
INFJ 11.4 Rational (NT) 8.6
ESFJ 11.4 Idealist (NF) 21.4

3 The Experiments

Both experiments were conducted in controlled settings and as realistic as possible,
following strict planning, operation and analysis procedures, as proposed in the litera-
ture [5, 18]. These procedures included additionally the design and preparation phase, a
training session and the KTS-test session. In the design-preparation phase the used ma-
terial and instrumentation, the data collection forms, the starting (kick-off) procedures
and the student preparation took place. The communication transactions forms and the
collaboration-pair viability questionnaires were designed as simple as possible, helping
navigators to fill the forms easily (see web page: http://sweng.csd.auth.gr/
wb/pages/publications/agile-methods.php). Students practiced pair programming in their
laboratory assignments and were taught issues concerning communication and collabo-
ration-pair viability during the course. The knowledge they needed to successfully par-
ticipate in both experiments, was communicated to them in sufficient detail, through an
informatory-training session and their access to the experiment’s directory which was
created in the local network, containing all the experimental material in form of text
files. In this directory, all pairs had access to their own catalog in which they should
save their code and the associated unit tests. The informatory-training session was exe-
cuted a week before the KTS-test session. In both experiments, the students were sepa-
rated into two groups of pairs (control group=same| personalities/temperaments,
experimental group=mixed personalities/temperaments), according to their personality
and temperament inventories (see table 2). To ensure randomness in the pair - formation
and allocation process, we used a specific method which was tested in the pilot
experiment.

46 P. Sfetsos et al.

Table 2. Control and Experimental groups of pairs for both experiments

 PILOT experiment MAIN experiment
Control Group Experimental

Group
Control Group Experimental

Group
Tem-

perament
Type

Pairs

Tem-
perament
Type

Pairs

Tem-
perament
Type

Pairs

Tem-
perament
Type

Pairs

NF – NF 1 NF – SJ 1 NF – NF 4 NF – SJ 6
SJ – SJ 2 NF – SP 1 SJ – SJ 13 NF – SP 1

 NT – SJ 1 NT – SJ 5
 SJ – SP 1 NT – SP 1
 SJ - SP 5

TOTAL 3 4 17 18

The pilot experiment was run with the participation of 14 students - 7 pairs (3 pairs
in the control - and 4 pairs in the experimental group), a week before the main ex-
periment. The objective of the pilot experiment was to test the experimental design, to
assess the risk of failure, to discover unexpected or potential risks and gaps and test
the stated hypothesis. The pilot study was successful in terms of its objective as many
aspects were amended in the main experiment, according to the knowledge acquired
from the pilot study. The most important amendments concerned the pair forming and
pair allocation process (needed half hour to be implemented according to our
method), and the acceptance tests implementation. In the main experiment, 70 stu-
dents divided in 35 pairs (17 pairs in the control - and 18 pairs in the experimental
group) participated. The two tasks in which students were tested were completed in
two and a half hours. The data for communication transactions, velocity and collabo-
ration-pair viability was scrutinized to check whether was correctly completed.

3.1 Definition

We used the Goal-Question-Metric (GQM) template [1, 2] to define the goals and
metrics of the experiment (see Table 3). The formal definition [4] for the two experi-
ments is the following:

Analyze: Developer Personalities and Temperaments and in
particular how the mixed Personalities and Tempera-
ments impact on Effectiveness and especially on
Communication and Collaboration-pair Viability

For the purpose of: Assessing and Improving Pair Effectiveness
With respect to: Communication, Collaboration - Viability and ulti-

mately Effectiveness
From the point of view of: Researchers, Managers and Developers
In the context of: Undergraduate course, fourth semester, at the De-

partment of Informatics of the Technological Educa-
tional Institution of Thessaloniki-Greece

 Investigating the Impact of Personality Types 47

Table 3. Goals, Questions and Metrics for the two experiments

Goals Questions Metrics
Assess the impact of
developer personal-
ity and temperament
types on communi-
cation.

Do developer person-
ality and tempera-
ment types affect
communication?

(a) # of transactions on communication
modes including:
1. Requirements gathering trans.
2. Specification and Design changes

trans.
3. Code trans.
4. Unit test trans.
5. Peer reviewing trans.

Assess the impact of
developer personal-
ity and temperament
types on collabora-
tion – viability

Do developer person-
ality and tempera-
ment types affect
collaboration – pair
viability?

(b)
• Collaboration satisfaction
• Knowledge acquisition
• Participation (communication satis-

faction ratio, nuisance ratio, and
driver or navigator preference)

Ultimately: Assess
the impact of devel-
oper personality and
temperament types
on effectiveness

Do developer person-
ality and tempera-
ment types affect
effectiveness?

• Metrics from (a) + (b)
• Velocity (time to finish assignments)
• Productivity (points for correct solu-

tions)
• Customer satisfaction (passed accep-

tance tests)

3.2 Hypothesis Formulation

Null Hypothesis: Mixed developer personalities and temperaments do not affect pair
effectiveness and especially communication, collaboration-pair viability, and ulti-
mately pair effectiveness.
Alternative Hypothesis: Mixed developer personalities and temperaments affect pair
effectiveness and especially communication, collaboration-pair viability, and ulti-
mately pair effectiveness.

3.3 Communication and Collaboration -Viability Metrics

Communication metrics are classified as process metrics, because they measure collec-
tions of software-related activities within a process [9]. These metrics have been suc-
cessfully used for studying the information flow in software projects [15, 14, 8]. We
used communication metrics to compute the volume of the information exchanged
among developers, during a pair programming session, and to relate it to the outcome of
their assignments. Two restrictions concerning communication metrics derived from the
formality of the experiments. The first was that stand-up meetings were excluded and
the second that only bidirectional communication could be measured. To understand the
communication metrics we used, two definitions must be given:

• Communication modes refer to different types of information exchange that has
defined objectives and scope. Communication modes are characterised as sched-
uled if they are planned, or as event-driven if they occur non-deterministically. We

48 P. Sfetsos et al.

consider that most communication modes, concerning pair programming
activities, are scheduled. Communication modes in our experiment are the follow-
ing: requirements gathering, specification and design changes, coding, unit testing,
code and design reviews. In both experiments, communication was measured by
the volume of transactions in the various communication modes.

• Communication mechanism is a tool or procedure used to transmit and receive
information and supports a communication mode. Experiment participants simply
talked to each other, i.e. they used a face-to-face, synchronous communication
mechanism. No other tool (e.g. collaborative CASE tool) was used.

Communication transactions were recorded in printed forms by the navigator of each
pair through a log keeping process, as in the Personal Software Process (with differ-
ences in the types of the recorded data). Navigators were obligated to record the start -
and finish time for each assignment and to take note in the column of the proper
communication mode every time the partners were communicating. To ensure that the
data collection process would be successful in both experiments, the entire process
and the used forms were tested in a separate training session, before the execution of
the pilot experiment. Collaboration-pair viability was measured by data gathered from
a questionnaire, filled by both pair participants, after the code completion. The
questionnaire contained questions concerning collaboration such as members’ satis-
faction, knowledge acquisition and participation (grade of communication satisfac-
tion, grade of nuisance, voluntary or mandatory preference, and driver or navigator
preference).

The classification of the independent and dependent variable was derived from the
goal template. The independent variable (factor) is the same/homogeneous - or the
mixed/heterogeneous personality and temperament types of the pair developers. It is of
nominal type, with 2 possible values. The dependent variable is the pair effectiveness,
measured by pair performance and collaboration-pair viability. Velocity is measured by
the time needed for the completion of each assignment (finish time - start time). Produc-
tivity is measured by the points obtained by each pair for each assignment. The points
were measured on a ratio scale, from 1 (min) to 5 (max), based on checklists to ensure
objective assessment of the participants’ results. Customer satisfaction was measured by
the percentage of passed acceptance tests. The acceptance tests, of black-box type, were
written in spreadsheets, and ran manually by the authors, after the students completed
and delivered their code. A small number of representative tests were chosen to test the
business value of the students’ code. Data gathered by the questionnaire was measured
on a ratio scale, from 1 (min) to 5 (max). Collaboration-pair viability variables were
assessed both quantitatively and qualitatively. The results from the analysis of the quali-
tative assessment confirmed the empirical findings, but are not presented in detail due to
the limited space available. Also, due to the lack of space we are not going to present
the validity threats in this paper.

3.4 Data Analysis and Interpretation

For the statistical analysis of the data concerning performance variables we used a set
of statistical analysis methods, namely Descriptive Statistics, Correlations between
the variables, Comparisons between all variables using different Univariate statistical
tests and Multivariate Stepwise Discriminant Analysis (DA), to test the discriminating

 Investigating the Impact of Personality Types 49

power of all variables. For the statistical analysis of the data concerning collaboration-
pair viability we used Descriptive Statistics and the chi-square tests.

Descriptive Statistics: The distribution (mean, median, minimum and maximum) and
variance (standard deviation) of all variables separately for both tasks and groups and
also for the totals of the variables, are indicating significant differences between the
two groups. The box - plots and the three - dimensional scatter plot in Figure 1 con-
firm the significant differences between the two groups. The scatter plot shows for
both tasks, in totals, the relationship between communication transactions, velocity
(total time) and productivity (total points).

Correlations: The Pearson coefficient is significant for pairs of variables velocity
(time) – productivity (points) (negative correlation, p=0.037) and communication –
productivity (positive correlation, p=0.001). The non-parametric coefficients by Kendall

CONTROL EXPERIMENTAL

PERSONALITY TYPE GROUP

0

20

40

60

80

100

T
O

T
A

L
 C

O
M

M
U

N
IC

A
T

IO
N

S
 F

O
R

 T
W

O
 T

A
S

K
S

27

CONTROL EXPERIMENTAL

PERSONALITY TYPE GROUP

40

60

80

100

120

140

T
O

T
A

L
 T

IM
E

 F
O

R
 T

W
O

 T
A

S
K

S

CONTROL EXPERIMENTAL

PERSONALITY TYPE GROUP

2

3

4

5

6

7

8

9

T
O

T
A

L
 P

O
IN

T
S

 F
O

R
 T

W
O

 T
A

S
K

S

0 20 40 60 80 100TOTAL COMMUNICATIONS FOR TWO TASKS

40

60

80

100

120

140

TO
TA

L T
IM

E F
OR

 TW
O

TA
SK

S

23456789

TOTAL POINTS FOR

TWO TASKS

PERSONALITY
TYPE GROUP

CONTROL

EXPERIMENTAL

Fig. 1. Totals for both tasks and for both groups

50 P. Sfetsos et al.

and Spearman showed that all pairs of variables, for the first task, are significantly cor-
related. After calculating the same coefficients separately for each group, we found that
for the control group there is some indication of negative correlation (though not
significant, p=0.108) between time and productivity, while for the experimental group
there is significant positive correlation (p=0.019) between communication and pro-
ductivity. This shows that the experimental group performs better as the communica-
tion transactions increase, while for the control group communication seem that have
no effect on the productivity. On the contrary, the increased time spent has negative
results on the productivity of the control group. The same results were obtained for
the second task and for the totals for both tasks. Correlation is significant between
communication transactions and productivity for the experimental group. Acceptance
tests are strongly correlated with the productivity. For the first task, the correlation
coefficients are: Pearson’s 0.913, Kendall’s 0.896, Spearman’s 0.954 (all are highly
significant, p<0.0005). For the second task, the correlation coefficients are: Pearson’s
0.948, Kendall’s 0.907, Spearman’s 0.955 (all are highly significant, p<0.0005).

Comparisons – Univariate statistical tests: Comparing all variables between the
two groups with the t-test we found significant differences between the total number
of communication transactions, velocity and productivity for each task and in total for
both tasks. It is worth noting that only the transactions for design and code review do
not differ significantly for the two groups of pairs. Exactly the same results are ob-
tained by the non parametric Mann-Whitney test. The t-test for the acceptance tests
showed that the differences between the means are very significant (p<0.01). The
same result was obtained by the Mann-Whitney test.

Discriminant Analysis (DA): In order to test the discriminating power of all the
variables together we performed the multivariate technique Stepwise DA. The statis-
tics of the variables and their tests for equality of the group means have shown that
the differences are significant (as in the previous tests). The stepwise DA results in a
model with 4 out of 6 variables (time spent for the first task, time spent for the second
task, communication trans. for the second task, points for the second task). The model
based on these variables can classify correctly 97.1% of the cases in the two groups,

Table 4. Classification and cross-validation results

Personality type
group

Predicted Group Mem-
bership

 Control Experimental

Total

Control 16 1 17 Count

Experimental 0 18 18
Control 94,1 5,9 100,0

Original

%

Experimental ,0 100,0 100,0
Control 16 1 17 Count

 Experimental 2 16 18
Control 94,1 5,9 100,0

Cross-
validated(a)

%
 Experimental 11,1 88,9 100,0

97.1% of original grouped cases correctly classified. 91.4% of cross-validated grouped cases correctly
classified.

 Investigating the Impact of Personality Types 51

as can be seen from Table 4. The same Table contains the results of a cross-validation
procedure which gives 91.4% correct classifications. Specifically, only one of the 17
control pairs is misclassified as experimental while 2 of the 18 experimental pairs are
misclassified as control. Generally, the discrimination is very good and shows that the
overall behavior and performance of the two groups is significantly different.

Questionnaire Results for Pair Collaboration – Viability: For the statistical analysis
of the data concerned pair collaboration-viability we used Descriptive Statistics and the
chi-square tests. The results have shown that the experimental group gives higher ratings
concerning developers’ satisfaction, knowledge acquisition, collaboration’s satisfaction
ratio and driver preference. Nuisance ratios are almost the same for both groups.

3.5 Limitations

We believe that we took care of most significant validity threats to our study during
the design of the experiments and that all major risks were under control. We consider
that there exist two main limitations: the short-time study on pair effectiveness
(results may be different for long term collaborations or projects) and the use of stu-
dents as subjects. Nevertheless, we remind the reader that, although highly desirable,
such controlled experiments are difficult to conduct in an industry setting for various
practical reasons.

4 Conclusions

Considering pairs as adaptive ecosystems, adopting and properly reconciling Cock-
burn’s and Highsmith’s claims, we empirically investigated how developers with
different personalities and temperaments communicate and collaborate to produce re-
sults. The results from two experiments have shown better performance and collabora-
tion-viability for pairs with mixed personalities and temperaments, leading us to the
rejection of the stated null hypothesis and keeping of the alternative one. Communica-
tion variable was included in the performance variables to capture communication in
real activities occurring during pair programming. The analysis of data for this variable
have shown that productivity for pairs with mixed types is positively correlated with
communication transactions, while the same does not hold for pairs of the same types.
This important empirically supported finding by both experiments can help organiza-
tions and managers to improve pair effectiveness, by first identifying and then matching
developers’ personality and temperament types to their potential roles and tasks, effec-
tively exploiting their differences in pair formations and rotations.

References

1. Basili V. and Weiss D. A Methodology for Collecting Valid Software Engineering Data.
IEEE Transactions on software engineering, vol SE-10, pp. 728-738; Nov. 1984.

2. Basili V. and Rombach H. The TAME Project: Towards Improvement- Oriented Software
Environments; IEEE Transactions on software engineering, 14(6): 758-773; June 1988.

52 P. Sfetsos et al.

3. Beck, K. Extreme Programming Explained: Embrace Change. Reading, Massachusetts:
Addison-Wesley. 2000.

4. Briand, L., Differding, C., Rombach, H. Practical Guidelines For Measurement-Based Proc-
ess Improvement, Software Process Improvement and Practice, 2(4), pp253-280, 1996.

5. Briand L., Arisholm S., Counsell F., Houdek F. and Thevenod-Fosse P. Empirical Studies
of Object-Oriented Artifacts, Methods, and Processes: State of the Ar and Future Direc-
tions. Empirical Software Engineering, 2000.

6. Cockburn, A. The Coffee Machine Design Problem: Part 1 & 2. C/C++ User’s Journal,
May/June, 1998.

7. Cockburn, A. Agle Software Development. Addison-Wesley, 2002.
8. Dutoit, A. and Bruegge B. Communication Metrics for Software Development. IEEE

transactions on Software Engineering, 1998.
9. Fenton, N. Software Metrics, A Rigorous Approach. Chapman & Hall, 1991.

10. Highsmith, J. Agle Software Development Ecosystems, Addison Wesley, 2002.
11. Katira, N., Williams, L., Wiebe, E., Miller, C., Balik, S., Gehringer, E. On Under-standing

Compatibility of Student Pair Programmers. SIGCSE'04, 3-7, 2004.
12. Keirsey, D., and Bates, M., Please Understand Me, Del Mar, California: Prometheus Book

Company, 1984.
13. Myers, Isabel, "Manual: The Myers-Briggs Type Indicator," Palo Alto, California: Con-

sulting Psychologists Press, 1975.
14. Saeki, M. Communication, Collaboration, and Cooperation in Software Development —

How Should We Support Group Work in Software Development? Proc. Asia-Pacific Soft-
ware Eng. Conf. Brisbane, Australia, 1995.

15. Seaman, C., and Basili, V. “An Empirical Study of Communication in Code Inspections,”
Proc. 19th Int’l Conf. Software Eng., Boston, May 1997.

16. Sfetsos, P., Angelis, L., Stamelos, I. “Investigating The Extreme Programming System -
An Empirical Study”. Empirical Software Engineering, Vol 11, Nbr. 2, pp. 269-301, June
2006 (to appear).

17. Sundstrom, E., De Meuse, K., and Futrell, D. Work Teams, AmericanPsychologist, Febru-
ary, 1990, pp. 120-133.

18. Wohlin C., Runeson P., Höst M., Ohlson M., Regnell B. and Wesslén A. Experimentation
in Software Engineering: An Introduction, Kluwer Academic Publishers, 2000.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 53 – 64, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Collaborative Nature of Pair Programming

Sallyann Bryant, Pablo Romero, and Benedict du Boulay

IDEAS Laboratory, University of Sussex, Falmer, UK
s.Bryant@sussex.ac.uk, pablor@Sussex.ac.uk,

b.du-boulay@sussex.ac.uk

Abstract. This paper considers the nature of pair programming. It focuses on
using pair programmers’ verbalizations as an indicator of collaboration. A
review of the literature considers the benefits and costs of co-operative and
collaborative verbalization. We then report on a set of four one-week studies of
commercial pair programmers. From recordings of their conversations we
analyze which generic sub-tasks were discussed and use the contribution of new
information as a means of discerning the extent to which each pair collaborated.
We also consider whether a particular role is more likely to contribute to a
particular sub-task. We conclude that pair programming is highly collaborative
in nature, however the level of collaboration varies according to task. We also
find that tasks do not seem aligned to particular roles, rather the driver tends to
contribute slightly more across almost all tasks.

1 Introduction

Computer programming is known to be a complex skill that is difficult to master.
Recently pair programming, formalized as one of the core practices in eXtreme
Programming (XP), has been shown to assist in the production of high-quality
software (e.g. [1], [2], [3]. [4], [5], [6]). Here we consider co-located pair
programming, as ‘two people working at one machine, with one keyboard and one
mouse’ [28] and use the standard terms ‘driver’ and ‘navigator’ to indicate who has
control of the keyboard (the ‘driver’). These existing studies indicate an improved
outcome through pair programming (e.g. better quality software, faster production
speed, fewer defects and greater enjoyment) and high level reports (e.g. [7]) and
ethnographic studies (e.g. [8], [9]) provide useful insights into pair programming in
practice. However few, if any, studies have considered in detail the process by which
these improved outcomes are achieved. It has been suggested that they may be due to
‘pair pressure’ [7], where a programmer is more focused and thorough when being
watched. Other studies have suggested pairing may be beneficial due to greater
enjoyment [4], increased overhearing [8], provision of a better apprenticeship
environment [29] and increased knowledge distribution. Pair programming may
simply be a way of improving outcome by encouraging programmers to talk to
themselves, a phenomena known in other subject areas as self-explanation (e.g. [10]).
Here we consider the level of collaboration in pair programming across different
types of tasks via a series of on-site studies of experience professional pair
programmers ‘in the wild’ [11]. Via these four, one-week observational studies we

54 S. Bryant, P. Romero, and B. du Boulay

gathered, transcribed and analyzed 36 pair programmers’ conversations. Here we
consider sessions where both programmers have at least six months’ commercial pair
programming experience, in an attempt to address the following questions:

• Do pair programmers talk to themselves while working on separate sub-tasks?
• To what extent do pair programmers actually ‘collaborate’ on the same task?
• Are certain types of task more collaborative than others?
• Does a particular role (driver/navigator) contribute more strongly to a parti-

cular type of task?

Section 2 provides an overview of perspectives on the effects of verbalization to
oneself and others and section 3 considers how to characterize collaboration. We then
go on to explain the methodology and background of our studies and in section 4
present the results of an in-depth analysis of 23 hours of pair programmers’ dialogue.
We conclude by considering what these results tell us about the collaborative nature
of pair programming, and discussing further work which we now hope to undertake.

2 Verbalisation

Gathering and analyzing verbalizations from pair programmers seems ideal because,
unlike other domains, the pair are already communicating verbally and so do not need
to be asked to do so. Hopefully this minimizes the impact of the observation. Here we
take verbalisation to mean any talk produced, whether directed at themselves or each
other. While extra-pair communication (for example, discussion with a third party)
may be an interesting area of study, it has been excluded from this analysis.

Before we can begin to address the questions we have identified, it is necessary to
consider how to characterize collaboration. It has been suggested [19] that it is hard to
describe the differences between explaining to oneself and explaining interactively,
but that collaborative situations may be defined in terms of three factors: interactivity,
asynchronicity and negotiability. Similarly it is suggested [20] that co-operative work
is accomplished by the division of labour. Here, we will consider a collaborative task
one to which both parties are contributing information and a co-operative task one
where only one programmer contributes.

2.1 Collaboration and Verbalisation

Here we take collaboration to mean both parties contributing new information to a
given task. Collaboration is widely documented as being beneficial: Suthers [17]
suggests that collaboration increases learning, productivity, time focused on the task,
knowledge transfer and motivation and Jeong and Chi [18] show that understanding
improves after collaboration - those collaborating on a task learned more than those
performing it alone. It could be suggested that collaboration decreases the probability
of confirmation bias [11], where we filter information depending on what is expected
and therefore are more likely to attend to items confirming our hypotheses (even if
incorrect). Similarly, in pair programming literature, Williams et al. [1] suggest that
collaborating lowers the likelihood of developing ‘tunnel vision’.

 The Collaborative Nature of Pair Programming 55

2.2 Co-operation and Verbalisation

If pair programmers typically do not collaborate on a task, but are more likely to co-
operate (that is, split the task up and work on separate subtasks) verbalisation could
still affect performance. There is a body of evidence suggesting that simply talking to
oneself helps improve understanding. For example, Chi et al. [10] asked a group of
students to self-explain each line of a text about physics and showed that self-
explanation resulted in the production of a more correct mental model and a higher
gain in understanding. Ainsworth and Loizou [12] suggests that verbalization
provides a form of ‘computational off-load’, perhaps putting part of the problem ‘out
in the world’ rather than requiring it to be kept ‘in the head’. Ericsson and Simon [13]
state that verbalization provides an intermediate re-coding of information, and that in
the process of this recoding, it is necessary to add further information for
communication purposes which may itself prove useful. Cox [14] also shows that
translation between modalities (in his work from mental to diagrammatical) improves
understanding. This might all be easily extrapolated to the domain of computing and
suggests that simply talking about a software development issue may assist in its
understanding and ultimately its resolution. In fact there are a number of accounts of
this effect including talking to a rubber duck [14] or even a poster of your favorite
movie star.

Studies considering the effect of requested verbalization have also addressed this
issue with somewhat different results. Such studies have questioned the use of
eliciting verbal protocol (asking participants to talk to themselves as a means of
gaining insight into mental processes) and considered whether talking aloud may
change the manner in which a task is performed. Of particular interest, Ericsson and
Polson [15] show that talking aloud has an effect no different from counting out loud
while performing a task – it slows participants down but does not affect their
performance.

Another group of studies of a phenomenon known as ‘verbal overshadowing’
suggests that verbalization may sometimes have a negative effect. Schooler et al. [16]
show that verbalization may interfere with non-verbal (insight) tasks, because they
rely on non-reportable mental processing. An example of these type of insight tasks
are those requiring a ‘eureka’ moment rather than a step-by-step process of deduction.

These three schools of thought may at first seem contradictory, however if we
consider task type this suggests a more complementary picture, perhaps where
explaining and embellishing help in understanding non-insight problems, ‘thinking
aloud’ has no effect, and trying to talk about an insight problem has a negative
impact. This suggests that particular types of software development task may be
helped or hindered by verbalization even if just talking to oneself. There may, of
course, be other explanations, including the context in which the studies took place
and the means by which verbalizations were elicited.

It would appear difficult to distinguish between co-operation and collaboration in
pair programming sessions, however this might be achieved by considering whether
the two individuals are holding a collaborative conversation or following all the rules
involved in having a conversation (turn taking etc) but actually holding two separate
self-conversations, or ‘interleaved monologues’. The method we have used to
ascertain this is to consider not only whether each party is contributing to the

56 S. Bryant, P. Romero, and B. du Boulay

conversation, rather whether these contributions are ‘on task’. We have particularly
looked at instances of new information being added to each task in a pair
programming session. This is discussed in further detail in Section 3.

3 Study Background and Methodology

In line with calls for studies of programmers working in an industrial setting [21], the
analysis and results presented here are from four, one-week studies of commercial
programmers working on on-going tasks in their usual environment. While a variety
of levels of experience were studied (see [22] for insights about the differences in
behavior between novice and more experienced pairers) this paper only considers
programmers who had been commercially pair programming for a minimum of six
months. The four studies were from three different industrial sectors and all the
studies took place at medium to large scale companies. All of the projects encouraged
or expected programmers to work in pairs whenever possible. Across the companies
the pairs generally seemed empowered and were considered responsible for
completing their tasks as they considered appropriate. The profiles of the session are
shown in Table 1:

Table 1. Profile of the companies, projects and sessions studied

Number of projects

considered

Number of pair programming

sessions considered

Agile/XP development

approach?

Banking 1 3 Yes

Banking 4 12 Yes

Entertainment 2 10 Yes

Mobile
communications

2 11 Yes

The methodology used followed the framework for verbal protocol analysis set
down by Chi [24] in which protocols are produced, transcriptions are segmented and
coded according to a coding schema, depicted in some manner and patterns are sought
and interpreted. A literature review on the use of verbal protocols in software
engineering is available [26], which also suggests that the analysis of verbalisation
may be a useful method for use in the study of pair programmers so that ‘the
cognitive processes underlying productivity and quality gains can be formally mapped
rather than speculated about’.

Here each one-hour recording was transcribed and segmented into utterances (an
utterance typically being a sentence). A coding schema was produced by reducing the
work in each of the session into a tree of numbered subtasks (e.g. see Figure 1). These
subtasks were derived from the dialogue by considering what was required in order to
complete the task. The derived tasks were at a level of abstraction higher (i.e. less
detailed) than writing a line of code but a lower level than the overall task itself. They
were typically either:

 The Collaborative Nature of Pair Programming 57

• Things which needed to be done
• Things which needed to be understood
• Things which needed to be decided
• Things which needed to be ‘broadcast’ (outside of the pair)

Further division into sub-sub-tasks etc. was common during the process of deriving
sub-tasks.

Any utterance in which new information was added was then coded with the
number of the subtask the information was contributing to, the contributor (A or B)
and their role at that time (navigator or driver - note it was usual for participants to
change roles several times during a session). See Table 2 for an example coding (note
that line 4 is not coded as it is considered a continuance of line 2).

Copy directory

1
Create new
directory

2
Agree naming
standards

3
Copy directory
contents

Fig. 1. Example subtask decomposition

Table 2. Example coding of dialogue

No Participant Role Subtask Generic
subtask type

Utterance

1 B Nav 1 B So basically we can create a
directory…and we can just use…

2 A Dri 2 A …We put the date that we are
going to put the X in.

3 B Nav - Right
4 A Dri - So when you look at it you know

that it was done on this date
5 B Nav Good
6 A Dri 2 A …Then that’s a standard file
7 B Nav 3 B I’ll just copy it all over, apart from

the update.

In order to analyze the extent to which different types of subtask fostered or
inhibited collaboration, the subtasks from all sessions were then used to derive a set
of generic subtask types (see Table 3). The generic subtasks were then compared
with those described in the literature to ensure coverage. A difference with those
tasks described in [27] was the lack of a discrete ‘design’ category. While part of

58 S. Bryant, P. Romero, and B. du Boulay

this is covered in ‘agree strategy’, the lack of a design category is not surprising in
an XP environment, where there is no ‘up-front’ design task, rather design takes
place as part of the coding task. The following list shows the derived generic sub-
tasks used in the analysis. These cover all the tasks that were identified and
therefore categories such as L (Discuss the IDE) were rarely used but are included
for completeness. Instances of social chat either within or outside the pair were not
considered.

Table 3. Derived generic sub-tasks

A Agree strategy/conventions Including approach to take, coding standards and naming
conventions

B Configure environment Setting up paths, directories, loading software etc.
C Test Writing, running and assessing the success of tests
D Comment code Writing or modifying comments in the code
E Correspond with 3rd party Extra-pair communication: person to person, telephone or email
F Build, compile, check in/out Compiling and building on own or integration machine
G Comprehend Understanding the problem or existing code
H Refactor Re-organising the code
I Write new code Creating completely new code to complete the assigned task
J Debug Diagnosing, hypothesizing and fixing bugs
K Find/check example Looking at examples in books, existing code or on-line
L Discuss the IDE Talking about the development environment

4 Results

The pair programmers studied had all been pairing commercially for at least six
months. While the introduction of pair programming was reported as having been
accepted very differently (some programmers were initially very reluctant to pair,
while others were keen to), all of the pairs observed behaved in a professional
manner and were highly focused on the task at hand. The sessions observed showed
a surprisingly high amount of verbal interaction. Pair programmers were shown to
produce more than 250 verbal interactions per pair programming hour. Generally
there were only very brief periods of silence. Even when a pair was awaiting a suite
of tests to run, for example, they would often take the opportunity for some social
chat.

The analysis performed shows that both partners contributed to more than 93% of
subtasks, that is, the programming pair collaborated on 93% of the sub-tasks they
performed. Similarly, when considered by role, slightly fewer, but still just more than
93% of subtasks were contributed to by the driver and by the navigator. These results
suggest that pair programming sessions are highly collaborative in nature and that the
programming pair really are working together on the vast majority of tasks. We will
now take a closer look at the types of tasks in which more and less collaboration took
place. First, in Figure 2 we consider the number of contributions made for each
generic subtask type in order to ascertain which were the most common types of task
for the sessions observed.

 The Collaborative Nature of Pair Programming 59

Fig. 2. Distribution of contributions amongst generic sub-tasks

It is interesting to note that the majority of contributions related to comprehension
– understanding the problem or existing code. Second most common is writing new
code, followed by testing (iwriting and running tests). Least common were discussing
the IDE, commenting code (which is in line with the idea of self-commenting code)
and corresponding outside the pair. If we normalize our data to ascertain the
percentage of tasks of each type that were collaborative both across participants (i.e.
both participants contributed to a task) and across role (i.e. both roles contributed) we
obtain the percentages outlined in Table 4. Figures in the two columns are often, but
not always the same, as a participant may contribute as both driver and navigator
when roles changed mid-task.

Table 4. Percentage of tasks of each generic type that were collaborative across participants
and roles

Subtask type Percentage of tasks
collaborative across participants

Percentage of tasks
collaborative across roles

A - Agree strategy 91.93 91.61
B – Configure environment 81.08 81.08
C – Test 91.92 92.20
D – Comment code 83.33 83.33
E – Correspond 95 93.33
F – Build,compile,check in/out 90.68 90.68
G – Comprehension 95.11 94.94
H – Refactor 94.29 95.24
I – Write new code 94.95 94.71
J – Debug 93.56 93.56
K – Find/check example 92.48 92.48
L – Discuss the IDE 100 100

Table 4 shows that both partners contributed to almost all tasks. Only configuring
the environment and commenting code had a level of collaboration below 90% and
even these were over 80%, although they were rarely performed. Thus the benefits
attributed to pair programming may well be due to the collaborative manner in which

60 S. Bryant, P. Romero, and B. du Boulay

tasks are performed. However, in order to further understand the nature and extent of
this collaboration we should consider each subtask type. In other words, since we
have ascertained that both parties contribute something to almost every task, we
should now consider the proportion of contributions made by each participant and
each role. If we first consider the level of collaboration between participants we find
the averages shown in Table 5, along with the maximum and minimum number of
contributions for each subtask type. These are then expressed as percentages of the
total contributions in Figure 3:

Table 5. Most and least collaboration by participant for each generic subtask type

Subtask type
Contributions by most active

participant
Contributions by least active

participant
Average Highest Lowest Standard

Deviation
Average Highest Lowest Standard

Deviation
A Agree strategy 3 13 0 2.6 1.4 8 0 1.6
B Configure
environment

3 10 0 3.0 0.8 7 0 1.7

C Test 3.7 17 0 3.2 1.5 15 0 2.3
D Comment code 2.2 5 1 1.5 0.8 3 0 1.2
E Correspond 4.8 14 0 5.2 1.9 7 0 2.3
F Build, compile,
check in/out

3.2 10 0 2.5 1.7 7 0 2.2

G Comprehend 5.2 32 0 5.7 2.0 12 0 2.6
H Refactor 4.1 11 1 2.6 2.2 9 0 2.4
I Write new code 3.9 14 0 3.0 1.7 8 0 1.7
J Debug 3.8 17 0 3.5 1.6 8 0 1.9

K Find/check
example

4.0 19 1 3.3 1.5 10 0 2.1

L Discuss IDE 2 2 2 0 1.0 1 1 0

Average distribution of contributions across
participants for each subtask

0.00

20.00

40.00

60.00

80.00

100.00

120.00

a b c d e f g h I j k l

Generic subtask type

Lowest
Highest

Fig. 3. Average distribution of contributions for generic subtask by participant

 The Collaborative Nature of Pair Programming 61

Interestingly, the task for which contributions are least evenly distributed
(averaging nearly 80:20 between participants) is agreeing strategy. It seems that this is
the task on which one person is more likely to take the lead, contrary to suggestions
that pair programming lessens the chance of tunnel vision [7]. However, the activity
most evenly distributed is Refactoring. This is unsurprising, given the high cognitive
load associated with considering both the current and potential future organization of
code. Table 6 and Figure 4 below consider the same issues according to role.

Table 6. Most and least collaboration by role for each generic subtask type

Subtask type
Contributions by driver Contributions by navigator

Average Highest Lowest Standard
Deviation

Average Highest Lowest Standard
Deviation

A Agree strategy 2.4 13 0 2.3 2.0 13.0 0 2.3
B Configure

environment
2.6 10.0 0 3.0 1.0 8.0 0 2.0

C Test 3.3 20.0 0 3.4 1.9 12.0 0 2.5
D Comment code 1.8 4.0 0 1.3 1.2 4.0 0 1.5
E Correspond 4.2 13.0 0 5.3 2.4 7.0 0 2.2
F Build,compile,

check in/out
2.8 10.0 0 2.7 2.0 7.0 0 2.2

G Comprehend 4.8 32.0 0 5.8 2.4 12.0 0 2.9
H Refactor 3.6 11.0 0 2.8 2.7 9.0 0 2.4
I Write new code 3.1 10.0 0 2.5 2.5 14.0 0 2.8
J Debug 3.1 12.0 0 3.1 2.3 13.0 0 2.6
K Find/check

example
3.2 19.0 0 3.4 2.3 10.0 0 2.4

L Discuss IDE 1.0 1.0 1.0 0 2.0 2.0 2.0 0

Percentage of contributions to

subtask type by role

0.0

20.0

40.0

60.0

80.0

100.0

120.0

a b c d e f g h I j k l

Generic subtask type

P
e
r
c
e
n

ta
g

e
 o

f

c
o

n
tr

ib
u

ti
o

n
s

Navigator

Driver

Fig. 4. Percentage each role contributed to each generic subtask type

As illustrated above, contributions were well distributed across roles with the
driver contributing slightly more than the navigator across all but one subtask type,

62 S. Bryant, P. Romero, and B. du Boulay

‘Discussing the IDE’, which happened rarely. This suggests that the driver and
navigator roles are less ‘tuned to different tasks’ but more a convenience in terms of
who types. Considering the additional cognitive load of typing, it is surprising that
drivers contributed more, however it could be that they were simply commentating on
what they were doing.

The two views above (by participant and by role) indicate that the programming pair
really are working together on each subtask, rather than each considering a different part
of the problem and then pooling results to cover the whole task. However, when one
considers more closely the level of collaboration on different types of task, it becomes
clear that some lend themselves more to collaboration than others. Similarly, a particular
role does not appear to dominate a particular type of task.

5 Conclusion

This report highlights pair programming as highly collaborative, with both partners
contributing information to almost every sub-task, irrelevant of role. This contrasts
with suggestions that the benefits of pair programming may come from encouraging
verbalization, facilitating overhearing or peer pressure from being watched. The
profile of the pair programming sessions showed an overall pattern with most time
spent on comprehension (understanding existing code and/or the nature of the
problem), followed by writing new code and then testing and least time discussing the
IDE and commenting code.

While generally very high (over 80%), the level of collaboration varied according
to task. Refactoring and writing new code showed the highest level of collaboration
and therefore one might suggest that the challenging nature of these tasks made
pairing on them most valuable. When the number of contributions per participant was
considered, one person was more likely to lead on (i.e. contribute most new
information to) agreeing strategy. This is a surprising and interesting phenomena that
requires further investigation, as agreeing how to tackle a problem could be
considered a highly complex task which one would imagine would benefit greatly
from input from both parties.

The studies performed showed very evenly distributed contributions across role,
with the driver contributing only slightly more than the navigator. This negates claims
that the driver and navigator roles may be oriented toward different types of task, but
further investigation is required if we are to fully understand whether a task benefits
from the driver and navigator focusing on different aspects (e.g. working at different
levels of abstraction).

It should be recognized that the companies studied were an opportunistic sample
rather than chosen for being particularly representative of the pair programming
community. In addition, while verbalisation occurs naturally in pair programming and
the programmer is already being observed by his/her partner, one should nevertheless
consider the possible effect of being observed by an experimenter. Finally, it should
be noted that the coding of verbalizations as contributing to particular sub-tasks was
only undertaken by one person and not blind double coded for accuracy due to
resource constraints.

 The Collaborative Nature of Pair Programming 63

Although the studies report highly positively on the overall collaborative nature of
pair programming, they also raise a number of further questions:

• Can software development tasks be designed to foster collaboration?
• Do the driver and navigator contribute at different levels of abstraction?
• What is the power balance in a pair – does one partner or role tend to lead

decision making?
• Is collaboration the key to a ‘successful’ pair programming session?
• Is novice pair programming similarly collaborative in nature, and if not, can

this be encouraged.

There is still much to learn about the nature of pair programming, particularly if we
are to successfully foster collaborative software development in the workplace and
teach it in the classroom in order to reap the many benefits it has been shown to have.

Acknowledgements

This work was undertaken as part of DPhil research funded by the EPSRC. The
authors would like to thank the participating companies: BBC iDTV project, BNP
Paribas, EGG and LogicaCMG.

References

1. Williams, L. et al., Strengthening the case for pair programming, IEEE software, 2000.
17(4): p19-25.

2. Jensen, R, A pair programming experience. The journal of defensive software engineering,
2003. 16(3): p.22-24.

3. Nosek, J.T, The case for collaborative programming. Communications of the ACM, 1998.
41(3): p.105-108.

4. Cockburn, A. and Williams, L, The costs and benefits of pair programming, in Extreme
Programming Examined, G. Succi and M. Marchesi (Eds). 2001, Addison Wesley.

5. Tessem, B., Experiences in learning XP practices: A qualitative study. In Fourth
International Conference on Extreme Programming and Agile Processes in Software
Engineering, 2003.

6. Lui, K. and K. Chan. When does a pair outperform two individuals? In Fourth
International Conference on Extreme Programming and Agile Processes in Software
Engineering, 2003.

7. Williams, L. and R. Kessler, Pair Programming Illuminated. 2003, Boston: Addison
Wesley.

8. Sharp, H. and H. Robinson. An ethnography of XP practices. In Fifteenth annual
psychology of programming interest group workshop, 2003.

9. Bryant, S., P. Romero and B. du-Boulay, Pair programming and the re-appropriation of
individual tools for collaborative software development, In press.

10. Chi, M., N. de Leeuw, M. Chiu and C. Lavancher, Eliciting self-explanations improves
understanding. Cognitive Science, 1994. 18: p439-477.

11. Hutchins, E., Cognition in the wild. 1995, Cambridge, MA: The MIT press.

64 S. Bryant, P. Romero, and B. du Boulay

12. Ainworth, S. and A. T. Loizou, The effects of self-explaining when learning with text or
diagrams. Cognitive Science, 2003. 27: p.669-681.

13. Ericsson, K. and H. Simon, Verbal reports as data. Psychological review, 1980. 87(3):
p.215-251.

14. Cox, R., Representation construction, externalized cognition and individual differences.
Learning and instruction, 1999. 9: p.343-363.

15. Ericcson, K. and P. Polson, A cognitive analysis of exceptional memory for restaurant
orders, in The nature of Expertise, M. Chi, R. Glaser and M. Farr (eds). 1988, Lawrence
Erlbaum Associates: Hillsdale, USA.

16. Schooler, J.A., S. Ohlsson and K. Brooks, Thoughts beyond words: When language
overshadows insight. Journal of experimental psychology: General, 1993. 122(2): p166-183.

17. Suthers, D. Towards a systematic study of representational guidance for collaborative
learning discourse. Journal of Universal Computer Science, 2001. 7(3).

18. Jeong, H. and M. Chi. Does collaborative learning lead to the construction of common
knowledge? Twenty-second annual conference of the cognitive science society. 2000:
Erlbaum, Hillsdale, USA.

19. Dillenbourg, P., What do you mean by collaborative learning? In Collaborative learning:
Cognitive and computational approachs, D. Dillenbourg, Editor. 1999. Elsevier: London,
UK. P1-9.

20. Roschelle, J. and S. D. Teasley, The construction of shared knowledge in collaborative
problem solving, in Computer Supported Collaborative Learning, C. E. O’Malley, Editor.
1995. Springer-Verlag: Heidelberg. O, 69-97.

21. Curtis, B., By the way, did anyone study any real programmers? Empirical studies of
programmers, E. Soloway and S. Iyengar (eds). 1986. P.256-261.

22. Bryant, S. Double Trouble: Mixing quantitative and qualitative methods in the study of
extreme programmers. Visual languages and human centric computing. 2004. IEEE
Computer Society.

23. Bryant, S., Romero, P. and du-Boulay, B, Pair Programming and the re-appropriation of
individual tools for collaborative software development (in press).

24. Chi, M., Quantifying qualitative analyses of verbal data: A practical guide. The journal of
the learning sciences, 1997. 6(3): p.271-315.

25. Dick, A. and B. Zarnett. Paired programming and personality traits in Third International
Conference on Extreme Programming and Agile Processes in Software Engineering, 2002.

26. Hughes, J. and Parkes, S., Trends in the use of verbal protocol analysis in software
engineering research. Behaviour and Information Technology, 2003, 22(2): p127-140.

27. Pennington, N., Stimulus Structures and Mental Representations in Expert Comprehension
of Computer Programs, Cognitive Psychology, 1987, 19: p295-341.

28. Beck, K., Extreme Programming Explained: Embrace Change, 2000. Addison Wesley.
29. Johnston, A. and Johnson, C.S. Extreme Programming: A more musical approach to

software development. Proceedings of the 4th International conference in XP and Agile
Processes in Software Engineering, 2003. Goos, G., Hartmanis, J. and van Leeuwen, J.
(eds): p325-327.

Is External Code Quality Correlated with
Programming Experience or Feelgood Factor?�

Lech Madeyski

Institute of Applied Informatics, Wroclaw University of Technology,
Wyb.Wyspianskiego 27, 50370 Wroclaw, Poland

Lech.Madeyski@pwr.wroc.pl
http://madeyski.e-informatyka.pl/

Abstract. This paper is inspired by an article by Müller and Padberg
who study the feelgood factor and programming experience, as candidate
drivers for the pair programming performance. We not only reveal a
possible threat to validity of empirical results presented by Müller and
Padberg but also perform an independent research. Our objective is to
provide empirical evidence whether external code quality is correlated
with the feelgood factor, or with programming experience. Our empirical
study is based on a controlled experiment with MSc students. It appeared
that the external code quality is correlated with the feelgood factor, and
programming experience, in the case of pairs using a classic (test-last)
testing approach. The generalization of the results is limited due to the
fact that MSc students participated in the study. The research revealed
that both the feelgood factor and programming experience may be the
external code quality drivers.

1 Introduction

Pair programming [1] has recently gained a lot of attention, as key software
development practice of eXtreme Programming (XP) methodology [2]. The main
idea of pair programming software development practice is that two programmers
work together, collaborating on the same development tasks. The basic aim of
pair programming, described in section 3.2, is to improve software quality.

Researchers and practitioners have reported numerous, often anecdotal and
favourable studies of XP practices and methodology. Empirical studies on pair
programming often concern productivity [3, 4, 5, 6, 7]. A few studies have focused
on pair programming, or test-driven development, as practices to remove de-
fects [4, 5, 8, 9], to influence the external code quality (measured by the number
of functional, blackbox test cases passed) [10, 11, 12] or reliability of programs
(a fraction of the number of passed tests divided by the number of all tests)
[13, 14, 15] and other quality benefits [16].

In spite of a wide range of studies, there is still limited evidence concerning
the role of the feelgood factor (how comfortably the developers feel in a pair
� This work has been financially supported by the Ministry of Education and Science

as a research grant 3 T11C 061 30 (years 2006-2007).

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 65–74, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

66 L. Madeyski

session [17]) and the programming experience in pair programming. The aim of
this paper is to fill this gap. So far, the results obtained by Müller and Padberg
[17] indicate that the pair performance is uncorrelated with the programming
experience whereas the feelgood factor is a candidate driver for the performance
of a pair.

The results presented by Müller and Padberg were obtained by applying a
special scheme for pairing the subjects. The most skilled subject had to pair off
with the lowest skilled subject, the second best skilled subject with the second
lowest skilled subject, and so on. The aim was to balance the skill level across
the pairs but, this special scheme for pairing the subjects might have hidden
a possible correlation of pair performance with the programming experience,
as the latter was averaged across pairs. In the Müller and Padberg study, the
performance of a pair was measured by the implementation time [17]. In our
study the implementation time is constant (eight laboratory sessions) and the
dependent variable is the external code quality, measured by the number of
acceptance tests passed (NATP), as suggested by George and Williams [10, 11]
and later used by Madeyski [12]. Therefore, the research question is whether the
external code quality is correlated with the pair feelgood factor, or programming
experience.

2 Problem Statement

The data for this study comes from a controlled experiment performed at Wro-
claw University of Technology. The purpose of the experiment was to investigate
the impact of test-driven development and pair programming practices on soft-
ware development products [12].

The following definition determines a foundation for our study [18]:

Object of study. The objects of study are software development products —
developed code.
Purpose. The purpose is to find whether the quality of software development
products is correlated with the programming experience, or the feelgood factor
of pair programming.
Quality focus. The quality focus is the external code quality (measured by
NATP).
Perspective. The perspective is from the researcher’s point of view.
Context. The study is run using MSc students as subjects and the finance-
accounting system as an object.

Summary: Analyse the software development products for the purpose of find-
ing correlation between quality of software development products and the feelgood
factor, or programming experience with respect to the external code quality, from
the researcher’s point of view, in the context of the finance-accounting system
development by MSc students.

Is External Code Quality Correlated with Programming Experience 67

3 Study Description

3.1 Context Selection

The context of the experiment was the Programming in Java (PIJ) course, and
hence the experiment was run off-line (not industrial software development) [18].
Java was the programming language, and Eclipse 3.0 was the Integrated Devel-
opment Environment (IDE). All subjects had prior experience in at least C and
C++ programming (using object-oriented approach). The PIJ course consisted
of seven 90 minute lectures and fifteen laboratory 90 minute sessions. The course
introduced Java programming language, using test-driven development and pair
programming as key XP practices. The subjects’ practical skills in programming
in Java, using pair programming, and test-driven development were evaluated
during the first seven laboratory sessions. The experiment took place during
the last eight laboratory sessions. The problem addressed the development of
the finance-accounting system. The requirements specification consisted of 27
user stories. The subjects participating in the study were mainly second and
third-year (and few fourth and fifth-year) computer science MSc students. MSc
programme of Wroclaw University of Technology is a 5-year programme after
high school. In total, 188 students were involved in the experiment, but only 132
students were working in pairs, see table 1.

3.2 Variables and Subjects Selection

The variables considered in this study are:

– The external code quality was measured by the number of acceptance tests
passed (NATP). This measure was proposed by George and Williams [10],
[11]. The number of acceptance tests passed was collected automatically by
our measurement infrastructure. In contrast to some productivity measures,
e.g. Source Lines Of Code (SLOC) per person-month, NATP takes into
account functionality and quality of software development products.

– The pair feelgood factor (PFF) was measured by the mean value of the
individual feelgood factors, collected by means of a post-test questionnaire.
The post-test questionnaire asked how comfortable the subject felt during
the pair programming session. An even number of alternatives (0–bad, 1–
sufficiently, 2–good, 3–very good) was chosen, because it forces the subjects
to get off the fence, and to prevent large numbers of neutral answers. The
answer ranges on an ordinal scale and this metric is called the individual
feelgood factor of a developer. Since our questionnaire did not ask the pairs
to specify a joint feelgood factor, the mean of the individual assessments was
taken as a substitute. The resulting metric is called the pair feelgood factor.
This approach to calculate the pair feelgood factor was used by Müller and
Padberg [15]. It may be questionable, because the individual feelgood factor
is an ordinal value, but we used it for compatibility reasons.

– The mean programming experience (MPE) was measured by the mean
value of the individual programming experience of each pair programmers,

68 L. Madeyski

collected by means of questionnaires. Not only industrial but also school
(university) experience was included.

The subjects are chosen based on convenience — the subjects are students
taking the PIJ course. Prior to the experiment, the students filled in a pre-
test questionnaire. The aim of the questionnaire was to get a description of the
students’ background, see table 1. The ability to generalize from this context is
further elaborated when discussing threats, see section 3.4.

In this study we analysed pairs using test-driven development practice (de-
noted as TP) and classic (test-last) testing approach (denoted as CP).

Table 1. The context of the study

Context factors CP TP

Number of MSc students: 62 70
– in the 2nd year 40 39
– in the 3rd year 18 27
– in the 4th year 3 4
– in the 5th year 1 0
– with industry experience 8 15
Median of individual feelgood factor 3 3
(0–bad...3–very good)
Mean of programming experience 3.61 3.86
(years)

Pair programming is a practice in which two programmers (called the driver
and navigator) work together at one computer, collaborating on the same de-
velopment tasks (e.g. design, test, code). The driver, is typing at the computer
or writing down a design. The navigator observes the driver’s work, reviews the
code, proposes test cases and considers the implementations strategic implica-
tions [4, 19].

Test-driven development (TDD) is a practice based on specifying a piece of
functionality, as a low level test before writing production code, on implement-
ing the functionality, so that the test passes, and on refactoring (e.g. removing
duplication) and iterating the process. The tests are run frequently while writing
production code. In case of classic (test-last) development, the tests are specified
after writing production code and less frequently [20].

The assignment of subjects to groups was performed first by stratifying the
subjects with respect to their skill level, measured by graders, and then assign-
ing them at random to test-driven development, or classic (test-last) testing
approach teams. However, the assignment to pair programming teams took into
account the people’s preferences (as it seemed to be more natural and close
to the real world agile software development practice). The students who did
not complete the projects (did not check in the project prerequisites the final

Is External Code Quality Correlated with Programming Experience 69

version of their program, or did not fill in questionnaires) were not included in
the analysis. The outcome was an unbalanced design, with 35 pairs using TDD
practice and 31 pairs using classic (test-last) testing approach.

3.3 Materials

The materials prepared for the experiment consisted of requirements specifica-
tion (user stories), pre-test and post-test questionnaires, Eclipse project frame-
work, a detailed description of software development methods, and of duties of
the subjects, instructions how to use the experiment infrastructure (e.g. CVS
Version Management System), and examples (e.g. sample source code of appli-
cations developed using TDD approach and JUnit tests). The number of accep-
tance tests passed was collected using automated infrastructure developed by
e-Informatyka team members of Wroclaw University of Technology.

3.4 Validity Evaluation

The fundamental question concerning the results of each study is how valid
the results are. Shadish, Cook and Campbell [21] defined four types of threats:
statistical conclusion, internal, construct and external validity.

The threats to the statistical conclusion validity are considered to be under
control. Robust statistical techniques, tools (e.g. Statistica) and large sample
sizes to increase statistical power are used. The risk in the treatment imple-
mentation is that the study was spread across laboratory sessions. To avoid the
risk, the access to the CVS repository was restricted to the specific laboratory
sessions (access hours and IP addresses). The validity of the study is highly de-
pendent on the reliability of the measures. The basic principle is that when you
measure a phenomenon twice, the outcome should be the same. The number of
acceptance tests passed is considered reliable because it can be repeated with
the same outcomes.

Concerning the internal validity, the risk of rivalry between groups must be
considered. The group using the traditional method may do their very best
to show that the old method is competitive. On the other hand, the subjects
receiving less desirable treatments may not perform so well as they generally do.
However, the subjects were informed that the goal of the study was to measure
different development methods, and not the subjects’ skills. A possible diffusion
or imitation of treatments were under control of the graders.

Threats to the construct validity are not considered very harmful. The mono-
operation bias is a threat, as the study was conducted on a single software
development project; however, the the project addressed a similar to real-life
situation problem (the development of the finance-accounting system). Using a
single type of measure would be a mono-method bias threat; however, measures
used in the study were rather objective.

The largest threat to the external validity is that students (who had short
experience in pair programming and test-driven development) were used as sub-
jects. Kitchenham et al.[22] states that students are the next generation of

70 L. Madeyski

software professionals, so, they are relatively close to the population of inter-
est. Replicated experiments by Porter and Votta [23] and Höst et al. [24] also
suggest that students may provide an adequate model of professional population.
However, it is too optimistic when we evaluate experience.

In summary, the threats are not regarded as being critical.

4 Operation

The experiment was run at Wroclaw University of Technology during eight lab-
oratory sessions. The data was primarily collected by automated experiment
infrastructure. Additionally, the subjects filled in pre-test and post-test ques-
tionnaires, primarily to get a description of their experience and preferences.
The package for the experiment was prepared in advance and is described in
section 3.3. A few people were involved in the experiment planning, operation
and analysis.

5 Analysis

The data are analysed with scatterplot and Spearman’s correlation coefficient.
Before conducting any correlational analysis, it is essential to plot a scatterplot
to look at the general trend of the data.

5.1 Discovering General Trend

A scatterplot tells us whether there seems to be a relationship between the vari-
ables, what kind of relationship it is, and whether any cases differ substantially
from the general trend of the data. We use an overlay scatterplot, as we want
to look at the role of both the pair feelgood factor and the programming experi-
ence on external code quality (but not the relationship between the pair feelgood
factor and the programming experience).

Scatterplot has been used to plot the relationship between the pair feelgood
factor and external code quality and between the programming experience and
external code quality simultaneously, see figure 1. From figure 1 it seems that
both the pair feelgood factor and programming experience are positively related
to the external code quality, at least in the case of classic (test-last) development
method used by pairs (CP). Spearman’s correlations were used to follow up these
findings.

5.2 Discovering Correlations

Table 2 shows Spearman’s correlations and significances for two experimental
groups (CP and TP).

In case of classic (test-last) testing approach the external code quality (mea-
sured by NATP) achieved by pairs is correlated with the pair feelgood fac-
tor (p = .022) and mean programming experience of programmers in pairs

Is External Code Quality Correlated with Programming Experience 71

Fig. 1. Scatterplot of Number of Acceptance Tests Passed against Pair Feelgood Factor
and Mean Programming Experience

Table 2. Nonparametric Correlations – Spearman’s rho

NATPTP NATPCP

NATP Correlation Coefficient 1.000 1.000
N 35 31

Pair Feelgood Factor Correlation Coefficient 0.121 0.364
Sig.(1-tailed) 0.244 0.022

Mean Programming Experience [years] Correlation Coefficient 0.222 0.512
Sig.(1-tailed) 0.100 0.002

(p = .002). The fact that a correlation exists is not sufficient to conclude that
the feelgood factor, or programming experience, actually drives the external code
quality in case of classic testing approach e.g. it is unclear whether a pair per-
forms well because the feelgood factor is high, or, whether the developers feel
comfortable because they have the impression that the number of acceptance
tests passed is high.

In the case of pairs using test-driven development practice, the effect is
smaller, and the results are not statistically significant (p > .05). A possible ex-
planation is that the number of acceptance tests passed is significantly affected

72 L. Madeyski

by the software testing approach. It appeared that the number of acceptance
tests passed was lower when test-driven development was used instead of the
classic, test-last software development approach in case of solo programmers
(p = .028) and pairs (p = .013) [12].

6 Summary and Conclusions

The previous research conducted by Müller and Padberg [17] revealed that pair
performance may be uncorrelated with the programming experience, but cor-
related with the pair feelgood factor. A possible threat to validity of empirical
results presented by Müller and Padberg is that they used a special scheme for
pairing the subjects that averaged the programming experience.

The results obtained in our study suggest that both the pair feelgood factor and
programming experience are correlated, in case of classic testing approach,with the
number of acceptance tests passed, which is a measure of the external code quality,
as suggested by George and Williams [10, 11]. Therefore, both the pair feelgood
factor and programming experience may be external code quality drivers.

The existence of correlations should be considered as a basis for future re-
search. From the correlation alone, one can not decide whether the number of
acceptance tests passed is high because the pair feelgood factor or mean program-
ming experience was high. To answer that question, further empirical studies are
necessary. A further research (e.g. experiment with the pair feelgood factor in
mind) is needed to establish evidence of the impact of the pair feelgood factor,
and programming experience on the external code quality and to evaluate the
impact of the pair feelgood factor and programming experience in other contexts
(e.g. in industry).

The validity of the results must be considered within the context of the limi-
tations discussed in the validity evaluation section.

Acknowledgments

The author expresses his gratitude to the students participating in the re-
search, the graders and the members of the e-Informatyka team (Wojciech Gdela,
Tomasz Poradowski, Jacek Owocki, Grzegorz Ma̧kosa, Mariusz Sadal and Micha�l
Stochmia�lek) for their help during preparations of the experiment infrastructure,
and to anonymous reviewers for helpful suggestions.

References

1. Williams, L., Kessler, R.: Pair Programming Illuminated. Addison-Wesley (2002)
2. Beck, K.: Extreme Programming Explained: Embrace Change. 2nd edn. Addison-

Wesley (2004)
3. Nosek, J.T.: The case for collaborative programming. Communications of the

ACM 41(3) (1998) 105–108

Is External Code Quality Correlated with Programming Experience 73

4. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case
for pair programming. IEEE Software 17(4) (2000) 19–25

5. Williams, L.: The Collaborative Software Process. PhD thesis, University of Utah
(2000)

6. Nawrocki, J.R., Wojciechowski, A.: Experimental evaluation of pair programming.
In: ESCOM ’01: European Software Control and Metrics. (2001) 269–276

7. Nawrocki, J.R., Jasiński, M., Olek, L., Lange, B.: Pair Programming vs. Side-
by-Side Programming. In Richardson, I., Abrahamsson, P., Messnarz, R., eds.:
EuroSPI. Volume 3792 of Lecture Notes in Computer Science., Springer (2005)
28–38

8. Williams, L., Maximilien, E.M., Vouk, M.: Test-Driven Development as a Defect-
Reduction Practice. In: ISSRE ’03: Proceedings of the 14th International Sympo-
sium on Software Reliability Engineering, Washington, DC, USA, IEEE Computer
Society (2003) 34–48

9. Maximilien, E.M., Williams, L.A.: Assessing Test-Driven Development at IBM.
In: ICSE ’03: Proceedings of the 25th International Conference on Software Engi-
neering, IEEE Computer Society (2003) 564–569

10. George, B., Williams, L.A.: An Initial Investigation of Test Driven Development
in Industry. In: SAC ’03: Proceedings of the 2003 ACM Symposium on Applied
Computing, ACM (2003) 1135–1139

11. George, B., Williams, L.A.: A structured experiment of test-driven development.
Information and Software Technology 46(5) (2004) 337–342

12. Madeyski, L.: Preliminary Analysis of the Effects of Pair Programming and Test-
Driven Development on the External Code Quality. In Zieliński, K., Szmuc, T.,
eds.: Software Engineering: Evolution and Emerging Technologies. Volume 130 of
Frontiers in Artificial Intelligence and Applications. IOS Press (2005) 113–123

13. Müller, M.M., Hagner, O.: Experiment about test-first programming. IEE Pro-
ceedings - Software 149(5) (2002) 131–136

14. Müller, M.M.: Are Reviews an Alternative to Pair Programming? In: EASE ’03:
Conference on Empirical Assessment In Software Engineering. (2003)

15. Müller, M.M.: Are Reviews an Alternative to Pair Programming? Empirical Soft-
ware Engineering 9(4) (2004) 335–351

16. Hulkko, H., Abrahamsson, P.: A Multiple Case Study on the Impact of Pair Pro-
gramming on Product Quality. In: ICSE ’05: Proceedings of the 27th International
Conference on Software Engineering, New York, NY, USA, ACM Press (2005)
495–504

17. Müller, M.M., Padberg, F.: An empirical study about the feelgood factor in pair
programming. In: METRICS ’04: Proceedings of the Software Metrics, 10th Inter-
national Symposium on (METRICS’04), Washington, DC, USA, IEEE Computer
Society (2004) 151–158

18. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Norwell, MA, USA (2000)

19. Williams, L.A., Kessler, R.R.: All I really need to know about pair programming
I learned in kindergarten. Commun. ACM 43(5) (2000) 108–114

20. Erdogmus, H., Morisio, M., Torchiano, M.: On the Effectiveness of the Test-First
Approach to Programming. IEEE Transactions on Software Engineering 31(3)
(2005) 226–237

21. Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental and Quasi-Experimental
Designs for Generalized Causal Inference. Houghton Mifflin (2002)

74 L. Madeyski

22. Kitchenham, B., Pfleeger, S.L., Pickard, L., Jones, P., Hoaglin, D.C., Emam, K.E.,
Rosenberg, J.: Preliminary Guidelines for Empirical Research in Software Engi-
neering. IEEE Transactions on Software Engineering 28(8) (2002) 721–734

23. Porter, A., Votta, L.: Comparing detection methods for software requirements
inspections: A replication using professional subjects. Empirical Softw. Engg. 3(4)
(1998) 355–379

24. Höst, M., , Wohlin, C., Thelin, T.: Experimental context classification: incentives
and experience of subjects. In: ICSE ’05: Proceedings of the 27th International
Conference on Software Engineering, New York, NY, USA, ACM Press (2005)
470–478

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 75 – 84, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Leveraging Code Smell Detection
with Inter-smell Relations

Bła ej Pietrzak and Bartosz Walter

Institute of Computing Science, Pozna University of Technology, Poland
{Blazej.Pietrzak, Bartosz.Walter}@cs.put.poznan.pl

Abstract. The variety of code smells deserves a numerous set of detectors
capable of sensing them. There exist several sources of data that may be
examined: code metrics, existence of particular elements in an abstract syntax
tree, specific code behavior or subsequent changes in the code. Another factor
that can be used for this purpose is the knowledge of other, already detected or
rejected smells. In the paper we define and analyze different relations that exist
among smells and provide tips how they could be exploited to alleviate
detection of other smells.

Keywords: Refactoring, bad code smells, inter-smell relations.

1 Introduction

The quality of source code is one of the factors affecting the software maintenance
cost [1]. Poor quality results both in short term in increased fault ratio and on the long
run in higher expenditure on modifications and further development of the product.
Code quality is then a costly, although valued attribute of software, which gives a
chance for savings and profits in further software maintenance, but requires
considerable initial investments.

High quality source code is particularly important in agile methodologies. eXtreme
Programming (XP) [2], the most popular among them, diminishes the importance of
documentation in favour to the source code readability and comprehension. Any
factors that do not contribute to these values are considered potential threats and are
candidates for improvement. Although there exist numerous different source code
flaws that can negatively affect the software quality, XP covers all of them by a vague
term of bad code smell [2]. Smells are defined as constructs in the code that “suggest
(sometimes scream for) the possibility of refactoring” [3]. This deliberate
imprecision, which puts stress on the human judgment based on experience and the
sense of aesthetics, leads to significant problems with automated detection and
identification of smells. It is illustrated by the diversity of over 20 bad smells
identified by Fowler, which differ in importance, complexity and localization. The
range of code elements affected by them spans from entire modules or class
hierarchies (Parallel Inheritance Hierarchies, Message Chain), through single classes
and objects (Feature Envy, Divergent Change, Large Class), then methods (Extract
Method, Long Parameter List), ending up with individual variables, statements and
expressions (Primitive Obsession, Temporary Field). As a result, there exists no

76 B. Pietrzak and B. Walter

general method of smell detection. Each smell describes a distinct flaw, related to
either improper structure, communication between objects, low readability and other
aspects. In turn, each smell is revealed with multiple symptoms of various nature and
require a unique mechanism of identification.

In attempt to capture the subtle, complex nature of smells, in [4] we proposed a
multi-criteria, holistic model of smell detection, which combines various sources
of information. We identified six such sources considered useful for smell
detection:

• Programmer's intuition and experience,
• Metrics values,
• Analysis of a source code syntax tree,
• History of changes made in code,
• Dynamic behavior of code,
• Existence of other smells.

Apart from the programmer's intuition, another four data sources are measurable or at
least intuitively comprehensible. The last one is special as it reuses information about
the already discovered smells, so that they can be exploited again in further
examination. It comes from the observation that smells are not independent, separated
phenomena and their presence or absence often carries knowledge about other smells.
Therefore, it is possible to support code smells detection process with already
available information about the relations existing between smells. Our initial thoughts
on the smell dependencies have been presented in [11].

In this paper we continue the research and examine some relations existing among
code smells, presenting how they could be exploited for more effective smell detection.

The paper is structured as follows. Section 2 describes seven identified relations
among bad code smells. It also suggests how the relations could be exploited in smell
detection. In section 3 we attempt to evaluate the relevance of the relations on
selected classes taken from Jakarta Tomcat project [5]. The paper is concluded with a
summary presented in the section 4.

2 Inter-smell Dependencies

Even a superficial analysis of Fowler's bad smells descriptions reveals that most of
them are related to each other: some appear in groups, while others exclude one
another. In general, the already confirmed presence or absence of a particular smell
may carry information about others. It is Fowler who noticed the existence of
relations and dependencies between smells: “When a class is trying to do too much, it
often shows up as too many instance variables. When a class has too many instance
variables, duplicated code cannot be far behind” [3].

The nature of the relations varies: some smells share a common flaw as an origin,
whereas others are revealed by similar symptoms or can be eliminated with a single
transformation. The kind of relationship suggests also the way it could be exploited.
We focus on the relations that (1) contribute to identification of other smells and (2)
their elimination.

 Leveraging Code Smell Detection with Inter-smell Relations 77

In [11] we proposed five coarse relations that describe dependencies between
smells. The extended and updated list now contains six relations:

• Plain support,
• Mutual support,
• Rejection.
• Aggregate support,
• Transitive support,
• Inclusion.

In order to measure the effectiveness of the relations we need a metric reflecting their
strength. Strength of the plain support relation, which also makes a basis for the other
ones, can be measured with the certainty factor [12]. Certainty factor for the relation
r(A, B) is interpreted as a number of objects incriminated with the smell B in the set of
objects featuring the smell A. The notion of the factor is used in the remaining
relations respectively.

2.1 Plain Support

Plain support relation is the simplest relation that may be identified. A smell B is
supported by A if the existence of A implies with sufficiently high certainty the
existence of B. B is then a companion smell of A, and the program entities (classes,
methods, expressions etc.) burdened with A also suffer from B. The relation makes a
basis for many other relations analyzed below.

The importance of the relation comes from observation that in A is often an easy to
detect smell with few symptoms, while B is a more complex one, embracing various
aspects and showing up with different symptoms. Thus, A can be utilized for
diagnosing B without delving into its complex nature.

As an example, let us consider the relation between Data Class and Feature Envy.
A Data Class is a class inappropriately used as a data container [3], which may evince
through one of the following:

• Class contains public fields,
• Class improperly encapsulates a collection,
• Class is structure equivalent and features with only getting and settings methods.

We only analyze the structure equivalent violations, because the other are not related
to the Feature Envy smell. The exemplary structure equivalent symptom, taken from
Tomcat’s code base (org.apache.catalina.deploy.FilterMap class), is provided below.

public class FilterMap implements Serializable {
 ...
 private String filterName = null;
 public String getFilterName() {
 return (this.filterName);
 }
 public void setFilterName(String filterName) {
 this.filterName = filterName;
 }
 private String servletName = null;
 public String getServletName() {

78 B. Pietrzak and B. Walter

 return (this.servletName);
 }
 public void setServletName(String servletName) {
 this.servletName = servletName;
 }
 ...
}

A method that is more interested in a class other than the one it actually belongs to,
is an example of a Feature Envy smell [3]. It indicates that the responsibility is
improperly distributed among classes. Feature Envious methods should be moved to
the class that they reference the most. The exemplary Feature Envious method taken
from Tomcat’s org.apache.catalina.core.ApplicationFilterFactory class is presented
below.

public final class ApplicationFilterFactory {
 ...
 private boolean matchFiltersServlet(
 FilterMap filterMap, String servletName) {
 if (servletName == null) {
 return false;
 } else {
 if (servletName.equals(
 filterMap.getServletName())){
 return true;
 } else {
 return false;
 }
 }
 }
 ...
}

The matchFilterServlet() method checks if the actual servlet name matches the
filter’s servlet name. It makes no use of any of its enclosing class' fields and methods.
There are two objects referenced by it: filterMap and servletName, each of them
referenced twice. Since servletName is of a standard type java.lang.String and cannot
be modified, then filterMap object is considered the possible owner of the method.
Thus, the method could be moved to the FilterMap class, which is a Data Class. As a
side effect, the latter smell would be removed as well.

Of course, there exist several design patterns, like Strategy and Visitor [8], which
are used primarily to combat the Divergent Change smell [3], that violate this rule. In
this article we did not take these cases under consideration.

The conclusion is that the structure equivalent version of the Data Class smell is
closely related to the Feature Envy smell. If there exist a Data Class, there is usually
also another class that uses its data. The client almost certainly contains methods that
are Feature Envy candidates.

 Leveraging Code Smell Detection with Inter-smell Relations 79

2.2 Mutual Support

This relation is a symmetric closure of the plain support: both related smells support
each other. It is not only simply equivalent to two plain support relations, but also
suggests that the related smells share common roots and originate from the same
code flaw. Removing the reason may result in reduction or even removal of both
smells.

Seemingly, it gives a powerful ability to attain two goals with a single action.
However, among the smells identified by Fowler there are no two odors mutually
supporting each other with considerable certainty. That observation is justified, as
different smells, although often related to each other, describe at least slightly, yet
different anomalies. Therefore, even if a smell A supports smell B, the reversed
relation (if exists) is weaker. Should any such smell be defined in future, it would
resemble the existing ones so much, that the gain from removing it along with others
would be negligible.

Unfortunately, we cannot provide any examples of the mutual support relation.

2.3 Rejection

Rejection yields the negative information about smells presence: a smell B is rejected
by a smell A, if the presence of A excludes the existence of the smell B. Knowing that,
we may restrict the exploration area to remaining smells and limit the computational
complexity of the detection process.

Noticeably, this relation, unlike others, is symmetric: if A rejects B, then B rejects
A. Presence or confirmed absence of any of smells participating in the relation carries
information about the other one.

For example, a Lazy Class, which has no or only limited functionality, cannot be
simultaneously an over-functional Large Class. Lazy Classes are relatively easy to
identify, because there exist few symptoms of low functionality. Therefore, for
classes diagnosed as lazy there is no need to look for Large Class signs. The latter
smell embraces multiple subtle symptoms, which are much harder to detect than Lazy
Class, like multiple interfaces, multiple instances, multiple subclasses, so the
knowledge of the Lazy Class presence allows giving up further exploration towards
Large Class.

2.4 Aggregate Support

Aggregate support generalizes the plain support and rejection relations to a case of
multiple source smells. A finite sets of detected smells A1, A2, …, Am and absent
smells B1, B2, …, Bm support a smell C as an aggregate, if they all support the
existence of the smell C with higher certainty than any of individual smells Ai does or
the smell C rejects the existence of any of smells Bj. Colloquially speaking, it is the
synergy of several source smells (both present and absent) that increases the
probability of existence of the target smell.

Aggregate support in several cases provides a stronger premise for many smells to
exist. Source smells usually combine a broader spectrum of symptoms, which gives
higher accuracy of the final result. The price for that is higher complexity of the
detection process, resulting from the necessity of analyzing multiple source smells.

80 B. Pietrzak and B. Walter

As an example, let us consider the following relation: if the given class is
simultaneously composed of setters and getters, is not Inappropriately Intimate, and is
the target of Move Method performed to remove a Feature Envious method, then it is
a Data Class. The certainty factor for that relation is then higher than it would be
without some of the supporting symptoms.

2.5 Transitive Support

The relation is a specific example of aggregate support with source smells depending
on each other. Provided that there exist two plain support relations p: A supports B
and q: B supports C, we can deduce the presence of a relation r: A supports C.

As an example we found the chain Data Class supports Feature Envy supports
Large Class. Large Classes are classes that bear too much functionality. The over-
functionality may result from improper class abstraction and combining several
classes together. Other reasons include the presence of Feature Envious methods or
Inappropriate Intimacy with other classes. Such a class needs to be split into smaller
classes. Therefore, Data Class suggests the presence of the Large Class, because
Data Class is related to Feature Envy (see 2.1) and the Feature Envy is related to
Large Class.

2.6 Inclusion

Inclusion is a directed relation between smells A and B, in which A is a particular case
of B. It means that every symptom revealing the smell A is also a sign of B's presence.
Therefore, by detecting the smell A we always find also the smell B.

Inclusion is slightly related to plain support, with exception that the special smell
entirely fulfills symptoms specific to the general one.

Fowler's catalog contains a few examples of included smells. For instance, Parallel
Inheritance Hierarchies is a special case of Shotgun Surgery smell.

2.7 Common Refactoring

The relations presented above concentrate on direct dependencies between smells.
There exist other relations, which connect smells indirectly. One of binding elements
is a common refactoring that once applied, affects all smells involved, either
removing them or removing some and introducing the other.

For example, a Move Method applied to a Lazy Class may result in Feature Envy
smell, because Move Method transfers the envious method outside, possibly reducing
responsibility carried by that class.

3 Evaluation

To evaluate impact of our findings, we performed experiment on 830 classes coming
from Apache Tomcat 5.5.4 [5] codebase. The project was selected for evaluation due
to its high quality source code [9].

In subsequent sections we provide examples of how the information about smells
could be exploited to detect other smells.

 Leveraging Code Smell Detection with Inter-smell Relations 81

3.1 Data Class and Feature Envy Plain Support

In order to select Data Class candidates, we employed a simple getter/setter measure.
We assumed that a class is a structure equivalent if the ratio of such methods is at
least 80%. Other symptoms (improper encapsulation of fields and collections) were
ignored. Candidates were then manually inspected to determine actual Data Class
smell representatives. We also considered a method to be Feature Envious if it
referenced other classes more frequently than its own class methods.

During inspection we found 26 classes, which had at least 80% of setter/getter
methods, and as such were identified as Data Classes. Among them, 24 were
referenced in Feature Envious methods. Therefore, it yields a high certainty factor
(equal to 92%), which strongly suggests that the relation exists.

3.2 Plain Support of Large Class for Feature Envy

We analyzed the plain support relation between Large Class and Feature Envy. To
measure class functionality we adopted four popular object-oriented metrics [6,7].
Their definitions and accepted thresholds taken from NASA’s historical metrics
database [10] are presented in Table 1.

Table 1. Metrics used for measuring functionality and their accepted thresholds (source: [6,10])

Description Max.
accepted

NOM Number of methods in the class 20
WMC Sum of cyclomatic complexities of class methods 100
RFC Number of methods + number of methods called by

each of these methods (each method counted once)
100

CBO Number of classes referencing the given class 5

We assumed that a class is considered large if at least one metric value exceeds the
accepted threshold. Moreover, we also experimentally found that a Large Class has at
least one Feature Envious method. Table 2 depicts the results of the evaluation. There
exist 230 classes classified by common detectors as large. Out of these, 205
referenced Feature Envious methods. As we supposed, it turns out that most Large
Classes have at least one Feature Envious method (certainty factor is equal to 89%),
which helps in detecting the smell.

Table 2. Analysis of Large Class, Inappropriate Intimacy and Feature Envy smell relations
(source: [11])

Metric Value
Total number of analyzed classes 830
Number of classes with Feature Envious methods 463
Number of Inappropriately Intimate classes 159
Number of Large Classes found with common detectors 230
Number of Large Classes found exploiting relations between smells 501

82 B. Pietrzak and B. Walter

3.3 Rejection

The rejection relation was analyzed with Inappropriate Intimacy and Data Class
smells. Inappropriately Intimate classes “spend too much time delving in each other
private parts” [3]. There are two violations covered by this smell:

• Bi-directional associations between classes, and
• Subclasses knowing more about their parents than their parents would like them to

know.

Data Classes are mere data holders and thus do not have bi-directional associations
with other classes. In other words, if a class is Inappropriately Intimate, then it cannot
simultaneously be a Data Class.

Due to difficulties with automatic detection of the latter symptom of Inappropriate
Intimacy, we considered only bi-directional associations between classes. Even a
single association was considered to be smelly. The evaluation revealed 159 of 830
inspected classes to have such association. The number of possible checks for the
Data Class smell was therefore reduced by 19%, because Inappropriate Intimacy
excludes that smell.

3.4 Aggregate Support

As an example of this relation we evaluated Data Class structure equivalent smell
[3]. A simple detector based on the setter/getter ratio found 66 candidates, out of
which, after manual verification, only 26 have been found actually smelly (39% of
accuracy).

We used this result to verify a hypothesis that information about support and
rejection relations of other smells with Data Class smell may increase the accuracy of
the detector, leaving the programmer with the smaller list of refactoring candidates to
manual assessment. Therefore we evaluated the following aggregate relation: if a
class has at least 80% of getter/setter methods, and is not Inappropriately Intimate
smell, and is the target of Move Method refactoring of the Feature Envy method, then
it is a Data Class.

Among 26 actual smell classes from 66 candidate classes we found 24 Data
Classes referenced by Feature Envy methods and simultaneously being not Inappro-
priately Intimate. Another 12 were Data Classes referenced by Inappropriately
Intimate classes. Therefore, there are only 30 classes left (out of 66) for manual
inspection. The certainty factor for the analyzed aggregate support relation is then
92% (24 out of 26 candidate classes featured that smell).

3.5 Relations with a Common Refactoring

The knowledge about the relations between smells may be helpful also while
removing them, i.e. at refactoring. We evaluated Feature Envy smell removal with
Move Method transformation. Moved methods targeted also 21 Data Classes and
simultaneously minimized the number of these smelly classes from 26 to 7. More
details can be found in [11].

 Leveraging Code Smell Detection with Inter-smell Relations 83

4 Conclusions

Every code smell is characterized by a different set of symptoms. To alleviate smell
detection, we exploit the fact that some of them are related to others and carry
information about them. The existence of already discovered smells becomes then a
valuable indicator of other flaws. Whereas it infrequently plays a primary role in
smell detection, it could be successfully utilized as an auxiliary source of smell-
related data.

In the paper we identified six distinct inter-smell relations that appeared useful for
smell detection. Another one relates smells through a common refactoring. The
experiment showed that the use of the knowledge about already identified smells in
Jakarta Tomcat code supports the detection process. We found examples of several
smell dependencies, including simple, aggregate and transitive support and rejection
relation. The certainty factor for those relations in that code suggests the existence of
correlation among the dependent smells and applicability of this approach to smell
detection.

Several activities benefited from the dependency analysis: in most cases it
improved effectiveness and efficiency of the smell detection process; in others it
suggested a single refactoring to remove several smells at once. Therefore, there are
multiple applications of the inter-smell relations.

Future research plans include examination of other smells and their relations, and
development of a tool for assisting a programmer in smell detection utilizing the
presented approach.

Acknowledgements

The work has been supported by the Rector of Pozna University of Technology as a
research grant BW/91-429.

References

1. Pearse T., Oman P.: Maintainability Measurements on Industrial Source Code Mainte-
nance Activities. In: Proceedings of International Conference of Software Maintenance
1995, Opio (France), pp.295-303.

2. Beck K.: Extreme Programming Explained. Embrace Change. Addison-Wesley, 2000.
3. Fowler M.: Refactoring. Improving Design of Existing Code. Addison-Wesley, 1999.
4. Walter B., Pietrzak B.: Multi-criteria Detection of Bad Smells in the Code. In: Proceedings

of 6th International Conference on Extreme Programming, 2005, Lecture Notes in
Computer Science 3556, pp.154-161.

5. The Apache Jakarta Project: Tomcat 5.5.4, http://jakarta.apache.org/tomcat/index.html,
January 2005.

6. Chidamber S.R., Kemerer C.F.: A Metrics Suite from Object-Oriented Design. IEEE
Transactions on Software Engineering, Vol. 20, No. 6, 1994, 476-493.

7. Marinescu R., Using Object-oriented metrics for Automatic Design Flaws Detection in
Large Scale Systems. ECOOP Workshop Reader 1998, Lecture Notes In Computer
Science; Vol. 1543, pp.252-255.

84 B. Pietrzak and B. Walter

8. Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

9. Tomcat Defect Metric Report, http://www.reasoning.com/pdf/Tomcat_Metric_Report.pdf,
visited in April 2005.

10. NASA Software Assurance Technology Center: SATC Historical Metrics Database,
http://satc.gsfc.nasa.gov/metrics/codemetrics/oo/java/index.html, January 2005.

11. Pietrzak B., Walter B.: Exploring Bad Code Smells Dependencies. In: Zielinski K., Szmuc
T. (eds.): Software Engineering: Evolution and Emerging Technologies. Frontiers in
Artificial Intelligence and Applications, Vol. 130, pp.353-364.

12. Łukasiewicz J.: Die logischen Grundlagen der Wahrscheinilchkeitsrechnung. Kraków,
1913, in: L. Borkowski (ed.), Łukasiewicz J.: Selected Works. North Holland Publishing
Company, Amsterdam, London, Polish Scientific Publishers, Warsaw, 1970.

Studying the Evolution of Quality Metrics in an
Agile/Distributed Project�

Walter Ambu2, Giulio Concas1, Michele Marchesi1, and Sandro Pinna1

1 Dipartimento di Ingegneria Elettrica ed Elettronica, Universitá di Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy

{concas, michele, pinnasandro}@diee.unica.it
http://agile.diee.unica.it
2 AgileTec, Via G. Murat, 26

09134 Cagliari, Italy
w.ambu@agiletec.it

http://www.agiletec.it

Abstract. This paper analyzes the development of a project initiated
by a co-located agile team that subsequently evolved into a distributed
context. The project, named JAPS (Java Agile Portal System)[1], has
been monitored on a regular basis since it started in January 2005, col-
lecting both process and product metrics. Product metrics have been
calculated by checking out the source code history from the CVS reposi-
tory. By analyzing the evolution of these metrics, it has been possible to
evaluate how the distribution of the team has impacted the source code
quality.

1 Introduction

In recent years many projects have been developed in a distributed context using
agile practices [2][3][4][5]. Obviously opportunities for a co-located team differ from
those for a dispersed team. Some XP/agile practices can be adopted at the same
level in both contexts, while others cannot [6][5]. Several case studies have been
published reporting experiences in applying agile practices in distributed projects,
but as far as we are aware nothing has been published to date concerning the anal-
ysis of the evolution of source code quality metrics in this kind of project.

1.1 CK Metrics

The quality of a project is usually measured in terms of lack of defects or main-
tainability. It has been found that these quality attributes are correlated with
specific metrics. For Object Oriented systems the Chidamber and Kemerer met-
rics suite [7] [8], usually known as the CK suite, is the most validated. The CK
suite is composed of six metrics:
� This work was supported by MAPS (Agile Methodologies for Software Produc-

tion) research project, contract/grant sponsor: FIRB research fund of MIUR, con-
tract/grant number: RBNE01JRK8.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 85–93, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

86 W. Ambu et al.

– Weighted Methods per Class (WMC): a weighted sum of all the meth-
ods defined in a class. Chidamber and Kemerer suggest assigning weights
to the methods based on the degree of difficulty involved in implementing
them [7]. Since the choice of weighting factor can significantly influence the
metric value, this is a matter of continuing debate among researchers. Some
researchers resort to cyclomatic complexity of methods while others use a
weighting factor of unity for validation of OO Metrics. In this paper we also
use a weighting factor of unity, thus WMC is calculated as the total number
of methods defined in a class.

– Coupling Between Object Classes (CBO): a count of the number of
other classes with which a given class is coupled, hence it denotes the depen-
dency of one class on other classes in the system. To be more precise, class
A is coupled with class B when at least one method of A invokes a method
of B or accesses a field (instance or class variable) of B.

– Depth of Inheritance Tree (DIT): the length of the longest path from
a given class to the root class in the inheritance hierarchy.

– Number of Children (NOC): a count of the number of immediate child
classes inherited by a given class.

– Response for a Class (RFC): a count of the methods that are potentially
invoked in response to a message received by an object of a particular class.
It is computed as the sum of the number of methods of a class and the
number of external methods called by them.

– Lack of Cohesion of Methods (LCOM): a count of the number of
method-pairs with zero similarity minus the count of method pairs with
non-zero similarity. Two methods are similar if they use at least one shared
field (for example they use the same instance variable).

1.2 Literature on CK Metrics

CK metrics have been widely validated in the literature. In a study of two com-
mercial systems, Li and Henry [9] explored the link between CK metrics and the
maintenance effort. Similarly, based on an investigation of several coupling mea-
sures (including CBO) and the NOC metric of the CK suite in two university
software applications, Binkley and Schach [10] found that the coupling mea-
sure was associated with maintenance changes made in classes. Studying eight
medium-sized systems Basili et al. [11] observed that several of the CK metrics
were associated with class fault proneness. In a commercial setting, Chidamber
et al. [12] noticed that higher values of the coupling and cohesion metrics in the
CK suite were associated with reduced productivity and increased rework/design
effort. Cartwright and Shepperd [13] studied a medium-sized telecommunications
system and found that the inheritance measures of the CK suite (DIT, NOC)
were associated with class defect density.

2 JAPS Process Evolution

JAPS is an open source j2EE solution for building web portals, integrating ser-
vices and handling contents through a content management system (CMS). The

Studying the Evolution of Quality Metrics in an Agile/Distributed Project 87

project was started in January 2005 by the agile team of AgileTec [14], an IT
company based in Italy. JAPS was conceived as a result of some team members’
experience in developing web portals and CMS with open source and legacy
software. The goal was to create an adaptive, non predictive system that was
simple, flexible and easily adaptable to customer needs.

The JAPS kernel was first built by a co-located team of two experienced
software engineers applying agile practices. These practices include pair pro-
gramming, testing, refactoring, planning game, short iterations [15][16]. After
two months the team released a prototype of the system.

Subsequently, a partnership agreement was drawn up with an IT company and
a commitment made to build two portals. As a result the number of team mem-
bers was increased from two to seven. As the new members came from different
IT companies, it was decided to adopt an open source-like development model.
In particular the team applied dispersed agile development [4] where developers
were physically alone most of the time and connected through communication
channels. Thus, in this phase the team started working in a distributed context.
In defining an agile methodology for this context and integrating agile practices
with open source principles [17], they allowed for the fact that all team members
lived in the same city. For instance, in order to share knowledge and experience,
it was decided to meet once or twice a week. Being located in the same city also
made it possible to schedule pair programming sessions as needed. The lack of
face to face communication in the distribution, made it necessary to define effec-
tive communication strategies. Voip systems, e-mail and mobile phones allowed
the team to communicate [18] effectively during development sessions even if
this involved several iterations.

Frequent releases with working functionalities allowed continuous customer
feedback. Requirements were gathered by using a prioritized backlog list shared
among team members [19]. After a first tuning phase, requirement management
using the backlog list became effective.

The other agile practices had to be adapted to the new distributed context.
This required several iterations before the team developed maturity in adopting
agile distributed practices.

The distributed phase initiated with an already defined test infrastructure.
This included testing frameworks for web-applications, xml and mock objects.
Several iterations were needed for the new team members to effectively im-
plement the testing practices in a JAPS context. Once the team had become
more comfortable with test harnesses, refactoring practices were applied more
effectively.

The JAPS development process is thus characterized by two distinct phases.
In the first phase, the team experimented and optimized some key agile practices
in a distributed context. In the second phase, the team developed maturity in
implementing these practices. The main phases of the evolution of the JAPS
process are summed up below:

– phase 0 (January 2005-February 2005). The kernel was built by a co-located
team of two experienced programmers using agile practices.

88 W. Ambu et al.

– phase 1 (March 2005-July 2005). The 7-strong team, (2 kernel developers +
5 new members), experimented key agile practices in a distributed context.

– phase 2 (August 2005- January 2006): the team developed maturity in the
application of key practices.

In the next section, we will analyze how the source code quality metrics evolved
during phases 1 and 2.

3 JAPS Metrics Evolution

In this section we analyze the evolution of source code metrics at regular two-
week intervals. Each source code snapshot has been checked out from the CVS
repository and analyzed by a parser that creates an xml file containing the
information needed for calculating the metrics. This xml file is parsed by an
analyzer that calculates all the metrics. Both the parser and the analyzer have
been developed by our research group as a plug-in for the Eclipse IDE. The
analyzed metrics are: Number of Classes, Class Size, Number of Test Cases,
Number of Assertions, WMC, RFC, LCOM, CBO, DIT, NOC.

0 5 10 15 20
100

120

140

160

180

200

220

240

260

280

iteration

N
um

be
r

of
 C

la
ss

es

0 5 10 15 20
56

58

60

62

64

66

68

70

iteration

C
la

ss
 L

O
C

S
 (

m
ea

n)

March 2005

January 2006

Fig. 1. Total number of classes and lines of code per class evolution (1 iteration = 2
weeks)

Number of Classes. This metric measures the total number of classes (abstract
classes and interfaces are included) and is a good indicator of system size. When
the distributed phase started, the system comprised 111 classes, then evolved

Studying the Evolution of Quality Metrics in an Agile/Distributed Project 89

0 5 10 15 20
0

10

20

30

40

50

60

70

iteration

T
ot

al
 N

um
be

r
of

 T
es

t C
as

es

0 5 10 15 20
0

50

100

150

200

250

300

350

400

iteration

T
ot

al
 N

um
be

r
of

 A
ss

er
tio

ns
March 2005 January 2006

Fig. 2. Number of test cases and number of assertions for each iteration (1 iteration
= 2 weeks)

rapidly as shown in fig. 1. The last CVS snapshot consists of 277 classes, indicating
that the system doubled in size during the distributed phases (phases 1 and 2).

Class size. The size of a class has been measured by counting the lines of code
(LOC), excluding blanks and comment lines. The mean value of class LOC has
been plotted in Fig 1 for each iteration. It is known that a ”fat” class is more
difficult to read than an agile one. High values of this metric indicate a bad code
smell that should be corrected using refactoring technics. Fig 1 shows a first
phase in which the metric grows rapidly followed by a second phase in which it
decreases.

Number of test cases. The number of test cases may be considered as an
indicator of testing activity. As shown in fig. 2, the metric increases more rapidly
in the second phase than in the first one. This might be explained by the faster
growth of the total number of classes in the second phase but examination of the
plot in fig 1 shows that this hypothesis can be reasonably ruled out. The main
reason is certainly the maturity developed by the team in the second phase, that
enabled them to write more tests during development.

Number of Assertions. Simply using the number of test cases, however, could
be considered a poor indicator of testing activity. In fact, new test methods
could be added to existing test cases without increasing their total number.
The number of test methods might be a better indicator of testing activity
than the simple test case count. On the other hand, a test method may have

90 W. Ambu et al.

0 5 10 15 20
6

7

8

iteration

W
M

C
(m

ea
n)

WMC

0 5 10 15 20
15

20

25
RFC

iteration

R
F

C
(m

ea
n)

0 5 10 15 20
15

20

25
LCOM

iteration

LC
O

M
(m

ea
n)

0 5 10 15 20

6

8

10
CBO

iteration

C
B

O
(m

ea
n)

0 5 10 15 20
0.4

0.6

0.8
DIT

iteration

D
IT

(m
ea

n)

0 5 10 15 20
0

0.5

1
NOC

iteration

N
O

C
(m

ea
n)

March 2005 January 2006

Fig. 3. CK Metrics Evolution (1 iteration = 2 weeks)

one or more assertions that compare expected and actual values. An assertion
is a call to those methods of TestCase that have a name beginning with the
string ”assert”(assertEquals, assertSame, assertNotNull.....). The total number
of assertions may be regarded as a more comprehensive indicator of testing
activity. This metric, reported in fig. 2 shows the same trend observed for the
number of test cases.

LCOM and WMC. The evolution of LCOM reported in fig. 3 shows a first
phase where classes are characterized by low cohesion and a second phase where
this metric has been progressively improved through refactoring. The same con-
siderations discussed above also apply to WMC: a first phase characterized by a
growing number of methods per class and a second phase where fat classes were
split into cohesive classes with a small number of methods.

CBO. The evolution of this metric reported in fig. 3 shows a first phase where
class complexity increases followed by a second phase where this metric remains
approximately constant. The mean value increases from 6 to 8 during phase 1
and stabilizes at 8 during phase 2.

RFC. As previously mentioned, the response for a class is calculated by summing
the number of methods and the number of calls to external methods. The RFC
evolution (fig. 3) shows an initial increasing phase followed by a second phase
in which the metric decreases slightly. This decrease could be explained by the
strong reduction of WMC and an approximately constant trend of coupling
between objects.

DIT and NOC. These metrics, that measure class inheritance characteristics,
exhibit an increasing trend during the distributed phase.

Studying the Evolution of Quality Metrics in an Agile/Distributed Project 91

4 Discussion

In this section we attempt to match the observed metrics evolution with the
development process phases. To do this we can group metrics exhibiting similar
behavior.

LCOM, WMC. The initial increasing phase can be explained by the lack of
rigorous application of certain key practices like testing and refactoring. In the
second phase, the team was able to reduce these metrics by applying simple
refactoring practices. The bad smell was due essentially to the large number of
methods and their low cohesion. These smells were eliminated by splitting the
fat classes into classes with a small number of more cohesive methods, and by
eliminating duplicated code. This also resulted in a reduction in the number of
lines of code, as shown in fig. 1.

CBO, RFC. The interesting consideration that emerged from observation of
these metrics lies in the second part of the plots. In fact, the effective adoption
of key practices by the distributed team did not lead to the expected reduction
in coupling and response for a class. This might be explained by the very nature
of these metrics, that measure class interrelationship. To reduce this metric it is
necessary to modify not only the single class but also the complex relationships
with other system classes. Distribution of the team resulted in the programmer
developing specialized knowledge on specific modules. Each time a programmer
performed refactoring he did so on components of his competence. Programmers
were apprehensive about changing something they knew little about. Their un-
easiness grew as system complexity increased. It should also be noted that the
kernel was built by two senior programmers and several meetings were planned
at the beginning of the distributed phase to disseminate knowledge to new team
members. Weekly meetings and a number of pair programming sessions did not
enable effective knowledge sharing across team members in the distributed en-
vironment. This specialization resulted in the impossibility of reducing those
metrics that depend on class interrelationships.

DIT and NOC. The same considerations made above hold here too. In fact,
refactoring a class hierarchy requires a broad vision of the system and this is
exactly what the distributed team did not have.

5 Conclusions

In this paper we have analyzed a project initiated by a co-located team and
subsequently developed in a distributed manner. We have also presented the
strategies employed by the team to effectively implement agile practices in the
distributed context. The project has been divided into three main phases:

– phase 0: A co-located team developed the kernel.
– phase 1: The team experimented and optimized agile practices in a dis-

tributed environment.

92 W. Ambu et al.

– phase 2: The team applied agile practices effectively despite not being co-
located.

The project was monitored by calculating product metrics during its develop-
ment. These metrics include the CK suite of quality metrics. Analyzing the
evolution of these metrics we found that in phase 1 the team increased system
complexity. In phase 2 we observed that the effective implementation of agile
practices resulted in system simplification. However, we also observed that the
team was unable to improve all metrics to the same extent. In particular it
proved impossible to reduce the value of those metrics that measure class inter-
relationships (CBO, DIT, NOC). This is likely due to the specialization of team
members in specific components of the system. Therefore, in our experience,
the adoption of agile practices in a distributed context may be effective only in
reducing a subset of complexity metrics. Moreover, in the initial experimental
phase of agile distributed practices system complexity was found to increase sig-
nificantly. This study has given the team an opportunity to reflect on how to
improve knowledge dissemination in a dispersed development environment. The
JAPS project has now been released as open source [1] and we will continue
monitoring both the process and metrics evolution in this new ”phase 3”.

References

1. JAPS: Java agile portal system. Url: http://www.japsportal.org (2005)
2. Poole, C.J.: Distributed product development using extreme programming. In

Eckstein, J., Baumeister, H., eds.: Extreme Programming and Agile Processes in
Software Engineering. (2004) 60–67

3. Fowler, M.: Using an agile software process with offshore development.
http://www.martinfowler.com/articles/agileOffshore.html (2004)

4. Braithwaite, K., Joyce, T.: Xp expanded: Distributed extreme programming. In
Baumeister, H., Marchesi, M., Holcombe, M., eds.: Extreme Programming and
Agile Processes in Software Engineering. (2005) 180–188

5. Baheti P., Williams L., G.E., D., S.: Exploring pair programming in distributed
object-oriented team projects. In: OOPSLA Educator’s Symposium. (2002)

6. Maurer, F.: Supporting distributed extreme programming. In: Proceedings of the
XP/Agile Universe 2002: Second XP Universe and First Agile Universe Conference.
(2002)

7. Chidamber, S., Kemerer, C.: Towards a metrics suite for object oriented design.
Proc. Conf. Object Oriented Programming Systems, Languages, and Applications
(OOPSLA’91) 26(11) (1991) 197–211

8. Chidamber, S., Kemerer, C.: A metrics suite for object-oriented design. IEEE
Trans. Software Eng. 20 (1994) 476–493

9. Li, W., Henry, S.: Object oriented metrics that predict maintainability. J. Systems
and Software 23 (1993) 111–122

10. Binkley, A., Schach, S.: Validation of the coupling dependency metric as a predictor
of run-time failures and maintenance measures. Proc. 20th Int’l Conf. Software
Eng. (1998) 452–455

11. V. Basili, L.B., Melo, W.: A validation of object oriented design metrics as quality
indicators. IEEE Trans. Software Eng. 22 (1996) 751–761

Studying the Evolution of Quality Metrics in an Agile/Distributed Project 93

12. S.R. Chidamber, D.D., Kemerer, C.: Managerial use of metrics for object oriented
software: An exploratory analysis. IEEE Trans. Software Eng. 24 (1998) 629–639

13. Cartwright, M., Shepperd, M.: An empirical investigation of an object-oriented
software system. IEEE Trans. Software Eng. 26(7) (2000) 786–796

14. AgileTec: Agiletec it company. Url: http://www.agiletec.it (2005)
15. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley

(1999)
16. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change- Second

Edition. Addison-Wesley (2004)
17. Koch, S.: Agile principles and open source software development: A theoretical and

empirical discussion. In Eckstein, J., Baumeister, H., eds.: Extreme Programming
and Agile Processes in Software Engineering. (2004) 85–93

18. Steven Fraser, Angela Martin, M.A.C.C.D.H.M.P.M.S.: Off-shore agile software
development. In H. Baumeister, M. Marchesi, M.H., ed.: Extreme Programming
and Agile Processes in Software Engineering. (2005) 267–272

19. Bent Jensen, A.Z.: Cross continent development using scrum and xp. In March-
esi, M., Succi, G., eds.: Extreme Programming and Agile Processes in Software
Engineering. (2003) 146–153

The Effect of Test-Driven Development on
Program Code

Matthias M. Müller

Fakultät für Informatik, Universität Karlsruhe,
Am Fasanengarten 5, 76 131 Karlsruhe, Germany

muellerm@ipd.uka.de

Abstract. Usage of test-driven development (TDD) is said to lead to
better testable programs. However, no study answers either the question
how this better testability can be measured nor whether the feature
of better testability exists. To answer both questions we present the
concept of the controllability of assignments. We studied this metric on
various TDD and conventional projects. Assignment controllability seems
to support the rules of thumb for testable code, e.g. small classes with
low coupling are better testable than large classes with high coupling.
And as opposed to the Chidamber and Kemerer metric suite for object-
oriented design, controllability of assignments seems to be an indicator
whether a project was developed with TDD or not.

1 Introduction

Test-driven development (TDD) is besides pair programming one of the main
programming techniques in extreme programming. However, test-driven devel-
opment has not been studied as thoroughly as pair programming. Studies dealing
with test-driven development have focused on the development cost or the quality
of the written tests [1, 2, 3, 4, 5]. Nobody investigated the structure of programs
developed with test-driven development although it is claimed that “Test-first
code tends to be more cohesive and less coupled than code in which testing isn’t
part of the intimate coding cycle” [6, p. 88].

This paper uses the concept of controllability [7] to investigate the effect of
test-driven development on program code. Controllability means that the pro-
gram can be put in every legal state by only altering the inputs. This concept is
applied to assignments. Controllability of an assignment means that the operands
on the right hand side are input parameters of a method or these operands can
be calculated from these parameters. We present a new metric called assignment
controllability (AC) which quantifies this property for methods and classes. The
assignment controllability is compared to the Chidamber and Kemerer metric
suite for object-oriented design [8] using a set of TDD and open-source projects
As a result, assignment controllability seems to support the rules of thumb of
testable code, i.e. fewer number of methods and low coupling, and assignment
controllability seems to be an indicator whether a project was developed us-
ing TDD or not. Throughout the paper we refer to projects which have been
developed with test-driven development as TDD-projects.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 94–103, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Effect of Test-Driven Development on Program Code 95

2 The Metric

2.1 Controllability

Controllability is a concept from the design of digital circuits. For example
Abramovici et al. [9] define controllability as ’the ability to establish a specific
signal value at each node in a circuit by setting values on the circuit’s inputs.’
The transformation of controllability to an object oriented program means that
all input parameters are known and that these parameters provide enough in-
formation to describe the state and the behaviour of the program. In this paper,
we concentrate on assignments as they provide the only means to change the
state of objects which represent the state of a program. Invocations of methods
which do not return any value are ignored by our analysis, so far.

2.2 Controllability of Assignments

The calculation of controllability is a data-flow problem. First of all, all param-
eters of a method as well as private or public instance or class variables are con-
trollable. These elements form the basic blocks for the calculation. Table 1 shows
the rules for the remaining parts of an assignment. The result of an assignment,

Table 1. Controllability of Operations

Operation Controllability of the result
lhs := rhs The left hand side of an assignment is controllable

if the right hand side is controllable.
exp1 ⊕ exp2 The result of an arbitrary binary operation ⊕ is con-

trollable, if both operands exp1 and exp2 are control-
lable.⊕ exp1 The result of an arbitrary unary operation ⊕ is con-
trollable, if the operand exp1 controllable.

obj.foo (a, b) The result of a function call controllable, if obj and
parameters a and b are controllable.

i. e. the left hand side, is controllable if its right hand side is controllable. An
expression is controllable if all its identifiers are controllable. The conditional
assignment is a special case, see Figure 1. The object a in line 6 is controllable
only if either both expressions exp1 and exp2 in the lines 2 and 4 are control-
lable, or, the condition in line 1 and one of the expressions exp1 or exp2 is
controllable. All constants and all messages send to this are not controllable.

2.3 Calculation

The controllability of a method m is the ratio of controllable assignments to all
assignments in m. We call this metric Assignment Controllability AC :

AC(m) =
number of controllable assignments in method m

number of all assignments in method m

96 M.M. Müller

1 i f (cond) {
2 a = exp1 ;
3 } else {
4 a = exp2 ;
5 }
6 b = . . . a . . .

Fig. 1. Conditional Assignment

Its range varies between 0 and 1. The controllability of a class c is the average
controllability of its methods. For a class c having n methods mi (i = 1 . . . n)
the assignment controllability is

AC(c) =
1
n

i=n∑

i=1

AC(mi) (1)

Methods without any assignments are ignored in the calculation.
A program to calculate the assignment controllability metric was implemented

using the Byte Code Engineering Library (BCEL) [10] of the Jakarta Apache
Project.

3 Data Set

Table 2 lists the projects used for this analysis. The type of project is given in

Table 2. Overview of Projects

Number of
Name TDD Classes Packages
Webtest yes 149 21
XPChess1 yes 63 8
XPChess2 yes 48 8
XPChess3 yes 68 8
Yaps yes 100 16
Sum 428 61
Ant no 372 22
JUnit no 75 7
Log4j no 228 19
Sum 675 48

the second column. The columns 3 and 4 present the number of classes and the
number of packages for each project. Webtest [11] is a testing tool for web appli-
cations. The projects XPChess1, XPChess2, and XPChess3 are student projects
from the extreme programming lab course held in the summer term 2005 at the

The Effect of Test-Driven Development on Program Code 97

Universität Karlsruhe. These programs are chess engines with command line in-
terface. Yaps is a portal framework of a medium-sized company. Ant [12] is the
Apache platform independent implementation of make. JUnit is the Java testing
framework of the xUnit family. Log4j [13] is the Java implementation of the pro-
tocol framework from the Apache project. The number of classes and packages
refer to the size of the application. The test classes were omitted because the
test classes were not part of this study.

4 Results

4.1 Metrics Used in This Study

The assignment controllability metric is compared to the following eight metrics.
The first six metrics are known as the Chidamber and Kemerer metric suite for
object oriented design [8]. The suite contains the weighted sum of methods of a
class (WMC). As the weights of the sum are set to one, the weighted method
per class metric simply presents the number of methods of a class. The depth of
a class in the inheritance tree (DIT) is the next metric. The third metric is the
number of children of a class (NOC). For the number of children only the direct
subclasses are count. The coupling of a class c (CBO) is the number of classes
from which c uses methods or variables. The response set of a class c (RFC) is
the number of all methods which are called directly from c. The lack of cohesion
of methods (LCOM) of a class c is the difference between the number of method
pairs of c that do not share an instance variable of c and the method pairs of
c that do share an instance variable of c. The difference is cut off at zero to
prevent negative values. The last two metrics do not belong to the Chidamber
and Kemerer metric suite. They are the number of assignments (Assign) and the
number of byte code statements (Size) of a class.

4.2 The Projects from the Metrics’ Point of View

Table 3 presents the metric values for the TDD-projects and the conventional
projects. The table lists the minium, the median (med), the maximum, and
the mean (x). We used the two-sided Wilcoxon test [14, pp. 106] to look for
differences in the data samples. The last column of Table 3 shows the p-values.
Values smaller than the 5 percent significant threshold are marked. The Wilcoxon
test shows a difference for all but two metrics: the depth in the inheritance tree
(DIT) and the weighted method per class.

4.3 Assignment Controllability on Method Level

Here, we focus on the values of the assignment controllability on method level.
Figure 2 which is located at the end of the paper shows for each project the
distribution of the assignment controllability. Two characteristics can be seen.
First, most methods have a value for the assignment controllability of 0 or 1.
This means that each project has a large number of methods most of which

98 M.M. Müller

Table 3. Metric values for the projects

conventional TDD Wilcoxon
Metric min med max x min med max x p-Value

AC 0 0.42 1 0.45 0 0.51 1 0.54 <0.01
LCOM 0 0 741 3.37 0 1 325 7.28 <0.01
RFC 1 10 197 14.35 1 8 91 11.26 <0.01
CBO 2 8 165 10.81 2 6 60 8.5 <0.01
DIT 1 2 11 2.15 1 1.5 10 2.16 0.32
NOC 0 0 52 0.35 0 0 31 0.48 <0.01
WMC 1 5 133 8.29 1 4 59 6.95 0.6
Assign 0 5 273 14.11 0 3 239 6.95 <0.01
Size 2 67 2178 140.18 3 57 1762 90.65 <0.01

either do not contain any controllable assignment (AC=0, left most bar in each
histogram) or in which all assignments are controllable (AC=1, right most bar).
A second characteristic is the height of the two bars. Each conventional project
has more methods without any controllable assignment than methods in which
all assignments can be controlled. This observation holds for Webtest as well,
but not for the other TDD-projects. To investigate this topic further, we look
at the figures presented in Table 4. It lists for each project the number of meth-
ods with at least one non-controllable assignments (AC<1) and the number
the methods in which all assignments are controllable (AC=1). We look at the

Table 4. Percentages of controllable methods per project and project group

Methods with
AC< 1 AC= 1

Project number % number % sum
Webtest 353 58.3 253 41.7 606
XPChess1 46 53.5 40 46.5 86
XPChess2 39 50.6 38 49.4 77
XPChess3 52 47.7 57 52.3 109
Yaps 138 59.0 96 41.0 234
TDD 628 56.5 484 43.5 1112
Ant 1144 63.1 669 36.9 1813
JUnit 146 68.9 66 31.1 212
Log4j 619 73.0 229 27.0 848
conv 1909 66.4 964 33.6 2873
all 2537 63.7 1448 36.3 3985

TDD-projects. Here, 43.5 percent of all methods have assignments which are
completely controllable. See the fourth value in the row labelled TDD. The
conventional projects achieve a value of 33.6 percent. The fraction of methods

The Effect of Test-Driven Development on Program Code 99

TDD: Webtest

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
25

0
TDD: XPChess1

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40

TDD: XPChess2

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

TDD: XPChess3

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0
0

20
40

TDD: Yaps

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

80

conv: Ant

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
80

0

conv: JUnit

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

10
0

conv: Log4j

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0

Fig. 2. Distribution of AC on method level for all projects

where all assignments are controllable to methods where at least one assign-
ment is not controllable is 484/628 = 0.771 for the TDD-projects. The fraction
for the conventional projects is 964/1909 = 0.505. The fraction for the con-
ventional projects is smaller than for the TDD-projects. The fraction for the
whole data set is 1448/2537 = 0.571. Finally, the fraction for the TDD-projects
is 0.771/0.505 = 1.526 times larger than for the conventional projects.

100 M.M. Müller

4.4 Correlation Analysis on Class Level

This section analyses the correlation of the assignment controllability to the other
metrics used in this study. Correlation analysis was performed using Spearman’s
method. Table 5 shows the correlation coefficients for the corresponding data
sets. The column labelled all shows the results for the pooled data set. The

Table 5. Correlation analysis on class level

AC
all TDD conv.

Assign -0.30 -0.19 -0.32
Size -0.34 -0.32 -0.35
WMC -0.20 -0.19 -0.26
DIT -0.22 -0.26 -0.20
NOC -0.07 -0.22 0.02
CBO -0.27 -0.20 -0.30
RFC -0.32 -0.31 -0.32
LCOM -0.23 -0.21 -0.29

following columns list the results for the TDD-projects and the conventional
projects, respectively. Two effects can be seen. First, all absolute values are
smaller or equal 0.35. These small values indicate a low correlation and it seems
as if assignment controllability covers a property which is not covered by the
other metrics analysed in this paper. And second, there is a negative correlation
of the assignment controllability to all other metrics for the all and the TDD data
sets. The negative correlation of the size metric means for example, that small
classes tend to have more controllable assignments in their methods than large
classes. A similar statement holds for classes with a small number of assignments
(Assign), for classes with a small depth of inheritance (DIT), and for classes with
low coupling (CBO). It seems as if the assignment controllability metric supports
the rules of thumb for testable code.

4.5 Logistic Regression

The applicability of the assignment controllability as indicator for the usage of
test-driven development is analysed. Logistic regression is used for this analysis
[15]. Logistic regression is an extension of linear regression to values on a nominal
scale. The type of the project is coded by a binary variable. All classes from
projects developed with test-driven development are coded with TDD=1. The
remaining classes are coded with TDD=0. The logistic model is as follows:

P (TDD = 1|X1, . . . , X9) =
1

1 + e−f(X1,...,X9)

f(X1, . . . , X9) = α +
9∑

i=1

βiXi

The Effect of Test-Driven Development on Program Code 101

The enhance readability, the variables Xi (i = 1, . . . , 9) represent the metrics
used in this study. We are looking for parameter values with whom we can
estimate the probability whether a project was developed with test-driven de-
velopment or not. We are not interested in the actual values of α and the βi.
We would rather like to know which metric plays a role in the model and how
large its impact on this model is. We estimate the parameters (βi and α) for two
data sets. The data set DAll contains all classes while the data set DAssign>0
contains only those classes containing at least one assignment.

Table 6 lists for each data set the estimated parameter values and the corre-
sponding standard error. The p-values in the last column refer to the hypothesis
test that the parameter has no impact on the model. These p-values are in-
teresting for this analysis. Only α and the assignment controllability have an

Table 6. Logistic model parameter estimates

DAll DAssign>0

Parameter Estimated Std. Err. p-Value Estimated Std. Err. p-Value
α -1.1955 0.2042 <0.001 -0.7337 0.2129 <0.001
AC 0.7171 0.2136 <0.001 0.8884 0.2306 <0.001
Assign -0.0393 0.0123 0.001 1.9888 62.9964 0.974
Size 0.0013 0.0013 0.312 -1.9909 62.9964 0.974
WMC 0.0134 0.0160 0.402 0.0159 0.0161 0.324
DIT 0.0609 0.0503 0.225 -0.0034 0.0533 0.949
NOC 0.0245 0.0294 0.404 0.0246 0.0308 0.424
CBO -0.0006 0.0209 0.975 0.0163 0.0226 0.468
RFC 0.0082 0.0201 0.683 -0.0058 0.0203 0.773
LCOM 0.0070 0.0051 0.169 0.0069 0.0051 0.180

impact on the model for both data sets (p<0.001). The number of assignments
is significant for the DAll data set as well. All other p-values are larger than
10 percent. Looking at the classes with at least one assignment our data set
suggests that the assignment controllability metric is a better indicator for the
usage of test-driven development than all the other metrics used in this paper.

4.6 Validity

There are two major threats concerning the validity of the results. First, the
data set of the TDD-projects is smaller than the data set of the conventional
projects. The main reason for this difference was the absence of industrial TDD-
projects. To overcome this shortcoming, we added the three student projects to
our analysis. Adding the student projects to the analysis increases the data set.
But now, we have three projects from the same problem domain. However, the
three projects have been developed by different student groups.

The next problem originates from the usage of student projects. It is unclear
how projects developed by developers experienced in test-driven development
differ from projects which have been developed by developers new to test-driven

102 M.M. Müller

development. Students have problems getting accustomed to the test-driven de-
velopment process [16, 17]. But whether their program code differs from that
written by professional developers is not known so far. Thus, the shown differ-
ences might not only be caused by the usage of test-driven development but also
by the differences caused by the usage of projects developed by students.

5 Conclusions

This paper investigated the assignment controllability of methods. We compared
projects which have been developed using test-driven development to conven-
tional projects. Our data set supports the following results:

– The number of methods where all assignments are completely controllable
is higher for projects developed with test-driven development than for con-
ventional projects.

– The metric assignment controllability is negatively correlated to all other
metrics studied in this paper. The negative correlation supports the rule of
thumb of testable programs.

– Assignment controllability is the only parameter that has a significant im-
pact on the predictability whether a project was developed with test-driven
development or not.

This study is a first step towards an understanding of the effects of test-driven
development on the program code. Further studies should repeat this analysis
with a larger data set to increase the validity of the results. Other metrics should
be incorporated into the analysis as well, such as complexity metrics or coverage
measures of existing tests.

Acknowledgement

I would like to thank Guido Malpohl for proof reading a previous version of this
paper and Christian Frommeyer for implementing the assignment controllability
calculator.

References

1. Müller, M., Hagner, O.: Experiment about test-first programming. IEE Proceed-
ings Software 149(5) (2002) 131–136

2. Pancur, M., Ciglaric, M., Trampus, M., Vidmar, T.: Towards empirical evaluation
of test-driven development in a university environment. In: EUROCON 2003.
Computer as a Tool. The IEEE Region 8. Volume 2. (2003) 83–86

3. George, B., Williams, L.: An initial investigation of test driven development in
industry. In: ACM symposium on Applied computing, Melbourne, Florida, USA
(2003) 1135–1139

The Effect of Test-Driven Development on Program Code 103

4. Geras, A., Smith, M., Miller, J.: A prototype empirical evaluation of test driven
development. In: International Symposium on Software Metrics (Metrics), Chicago,
Illinois, USA (2004) 405–416

5. Erdogmus, H., Morisio, M., Torchiano, M.: On the effectiveness of the test-first
approach to programming. IEEE Transactions on Software Engineering 31(3)
(2005) 226–237

6. Beck, K.: Aim, fire. IEEE Software 18(5) (2001) 87–89
7. Binder, R.: Design for testability in object-oriented systems. Communications of

the ACM 37(9) (1994) 87–101
8. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE

Transactions on Software Engineering 20(6) (1994) 476–493
9. Abramovici, M., Breuer, M., Friedman, A.: Digital Systems Testing and Testable

Design. Computer Science Press (1990)
10. Apache: Byte code engineering library (BCEL).

(http://jakarta.apache.org /bcel/index.html)
11. Canoo: Webtest. (http://webtest.canoo.com)
12. Apache: Ant. (http://ant.apache.org/)
13. Apache: Log4j. (http://logging.apache.org/)
14. Hollander, M., Wolfe, D.: Noparametric Statistical Methods. 2nd edn. John Wiley

& Sons (1999)
15. Kleinbaum, D.: Logistic regression: a self-learning text. Springer (94)
16. Wilson, D.: Teaching xp: A case study. In: XP Universe, Raleigh, NC, USA (2001)
17. Müller, M., Link, J., Sand, R., Malpohl, G.: Extreme programming in curriculum:

Experiences from academia and industry. In: Conference on Extreme Programming
and Agile Processes in Software Engineering (XP2004), Garmisch-Partenkirchen,
Germany (2004) 294–302

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 104 – 113, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Configuring Hybrid Agile-Traditional Software
Processes

Adam Geras1, Michael Smith2, and James Miller3

1 Ideaca Knowledge Services, Calgary, Alberta, Canada
adam.geras@ideaca.com

2 Department of Electrical and Computer Engineering, University of Calgary, Calgary,
Alberta, Canada

smithmr@ucalgary.ca
3 Department of Electrical and Computer Engineering, University of Alberta, Edmonton,

Alberta, Canada
jm@ece.ualberta.ca

Abstract. The traditional versus agile project debate is most often represented in
terms of polar positions of the life cycle – the process is either traditional or agile,
waterfall or highly iterative. This may be effective in intellectual discussions, but it
is highly unlikely to be useful to practitioners, especially those practitioners that are
facing traditional project pressures and trying to find the “home ground” for their
situation that will increase the likelihood that they will succeed. In this paper, we
discuss extensions to Boehm and Turner’s five dimensions for determining a
project’s “home ground” – that is, the process configuration that might best fit the
situation at hand. We have added dimensions to the basic framework provided by
Boehm and Turner and have considered the process configuration question as a
process itself and increased its scope to include both management and engineering
key practice areas.

1 Introduction

As agile processes enter the mainstream, it is becoming increasingly clear that many
organizations will attempt at least some, if not all, agile practices, especially given the
increasing pressure on software development organizations to be adaptable [1].
Boehm and Turner specify the dimensions of method selection as "criticality, size,
personnel, dynamism and culture" [2]. In this paper, we first evaluate, by drawing
upon both personal expertise and knowledge provided by a number of project
managers, the re-categorization of software process determinants into two broad
categories: customer/ developer concerns, and product/environment concerns. Then
we will describe a process for configuring hybrid agile-traditional software that uses
those determinants. By characterizing the customer/developer and the product/
environment, we are enabling a software process that is discovered and applied based
on its context – a context-driven software process.

2 Software Process Determinants

In this section, we will describe the software process determinants used and the
categories into which these are placed, as sh own in the Kiviat charts for the
customer/ developer profile (Fig. 1) and the product/environment profile (Fig. 2).

 Configuring Hybrid Agile-Traditional Software Processes 105

Fig. 1. The Customer / Developer Profile - The intent is to create one profile for each of the
customer and developer, so that any highlighted distinctions can be addressed as risks and
deviations from the ideal agile or ideal traditional home grounds can be assessed

Fig. 2. The Product / Environment Profile - The intent is to create one profile for each of the
product and the technical environment it will ultimately operate in, so that again any
highlighted distinctions can be addressed as risks

2.1 The Customer/Developer Profile

The process determinants in the customer/developer profile describe the customer and
developer in terms of their culture and values, skill, and history. Illustrative of the
importance of the customer, most adaptive processes rely on user involvement as a
key principle. Dynamic Systems Delivery Method (DSDM) uses "Ambassador User"
and "Advisor User" roles as the archetype of all customers on the project [3] to again

106 A. Geras, M. Smith, and J. Miller

signify that user involvement is a key to the success of the project. Similarly,
Highsmith states that agility involves much more than reducing documentation or
being lean - it's also about working collaboratively [4]. Cockburn incorporates the
customer profile as part of the "personal anchors" in [5].

Boehm similarly includes the customer profile as part of the "culture" dimension in
[2]. Both Boehm and Cockburn cite the culture of the customer organization as
possibly distinct from the culture of the supplier organization; reinforcing the point
that identifying and characterizing the culture of the customer is just as important as
understanding the culture of the supplier. Boehm acknowledges that the customer
representative becomes the primary stress point for agile methods [2], a point that
highlights the relevance of the customer’s domain knowledge as a process
determinant. He further characterizes the importance of the customer relationship but
unfortunately, his argument inappropriately boils down to talk of contracts and
customer relationships that are characterized by formal agreements. The "human"
side of the customer relationship should also be considered significant! The people
fulfilling the customer/end-user role may not be in their comfort zone when working
on the project, and preparing for their potential reactions to unforeseen events may
prove fruitful in maintaining progress. They are, after all, domain experts and not
necessarily software project experts. Hence, our primary customer profile process
determinants, differ from Boehm and Turner, and are illustrated in Fig. 1.

The customer’s agile personal bias indicates their particular experiences in
previous software projects. If the projects were successful, then there may be a
personal or even collective bias towards project styles and techniques that were
successful. Even without this history, the customer’s agile project experience level
will also partly drive the determination of the optimal project style. For example,
given a customer that has successfully accepted software in the past, the team may
approach them to be more highly involved in decision-making. A customer that has
less experience and tends to ‘panic’ at the slightest sign of trouble may be treated
differently. On one project we witnessed the team instituting an additional testing
level to shield the customer from the daily builds to counter the customer’s panic that
ensued from finding cosmetic errors.

Some projects also reported that customer availability is a limiting factor on their
ability to use agile processes. Getting timely feedback is critical on the project, but
sometimes it just isn’t logistically or politically possible to have the customer/end users
available as full-time members of the team. In many organizations, for example, the
customer still has their regular, full-time job, alongside participating as the key user
representative on the project. Both agile and non-agile processes would benefit from a
high level of user involvement so a low ranking on this dimension should be treated as a
risk on the project and an appropriate response designed-into the process. Availability
is considered part of the ‘motivation’ axis on the chart in Fig. 1.

A customer’s personal style also plays an important part in determining an optimal
software process. We have called this ‘culture’ on the chart. People and organi-
zations that struggling with accommodating or embracing change will find working
with an agile method difficult. Similarly, if they have trouble with ambiguity then a
development style that involves discovery (iterative and evolutionary) again might not
work for them. This interpretation of ‘culture’ is identical to [2] except we apply it to
the individuals and the organization separately. We have placed significance on the

 Configuring Hybrid Agile-Traditional Software Processes 107

separation of these two criteria based on experience with agile teams within non-agile
organizations. In observing the behavior of the agile team and its customer within the
non-agile environment, we concluded that the individuals on the team drove much of
the agility despite the non-agile surroundings. We found agile projects thriving
within non-agile organizations, and therefore concluded that making generalizations
about a given organization does not serve software process configuration well.

The corporate and IT culture of the organization will also play a part in setting the
software process. In many organizations, the funding for projects is based on a
satisfactory (and approved) business case. This funding model is a precursor to a
fixed-price, fixed-scope contract, even if the developer organization is an internal one.
This type of contract makes agile development difficult (not impossible, but difficult)
since the primary lever of control – variable scope – is less available. Similarly, IT
culture may end as constraints on the project processes. Agile projects rely on
multiple releases to achieve shorter time-to-benefits periods and to give the
development team early feedback. If there is a rigorous environment change control
process that any changes to production have to go through, then there may be some
tension between the project and the organizations that enforce the change mechanism.
The interactions between the project team and other IT organizations have to be
considered in the configuration of the process. If not, the likelihood of creating an
adequate development process decreases.

Finally, we have included a dimension on agile skills. In our experience, the agile
project places significant technical demands on the people fulfilling the customer role.
This is particularly notable in the areas of requirements management, change
management, and testing. All modern software processes require user involvement,
but some of the agile methods – extreme programming in particular – makes them
part of the team with specific responsibilities for prioritizing user stories (require-
ments) and for developing and running customer tests. This dimension is not so much
an assessment of the customer’s ability to use computers, as much as it is an
assessment of their skills in the agile practices that they must use to drive the project.
If the customer were more familiar with and skilled in agile project practices, then
they would receive a ranking on the periphery of the dimension. As with the
customer agile skill assessment, the developer’s agile skills are again not assessed
from good to bad, but instead ranked based on their experience with an agile toolset
and techniques (xUnit, FIT, refactoring, pair-programming, etc.). The ranking should
reflect the developer’s comfort with the agile practices and associated tools. If a team
is not familiar with refactoring and test-driven development, then asking them to use
these techniques to design and deliver a mission-critical system will not be optimal!

2.2 The Product/Environment Profile

The product profile is illustrated in Fig. 2 and shows a number of dimensions that
are identical to what Boehm and Turner used in [2], specifically dynamism
(relabeled as volatility in our figure), scope, and criticality. We have re-labeled the
rating scales for complexity as ‘simplicity’ to reflect the agile axiom for “keeping
things as simple as possible” [6]. From the product perspective, the simplicity
rating should reflect the amount of simplicity that the team can get away with and
still deliver an adequate solution. The environment perspective, on the other hand,

108 A. Geras, M. Smith, and J. Miller

should reflect the simplicity of the technical environment that the product will have
to operate in. For example, certain systems may have low computational comple-
xity but be required to inter-operate with several existing systems, making it’s
architecture more complex.

In relating Boehm’s “dynamism” dimension to project managers, they often break
it down further into two concerns –volatility and uncertainty. Volatility represents an
assessment of the extent of changes that may appear over the course of the project.
Uncertainty is related to other changes, such as architectural uncertainty, manpower
issues or changes in the business climate.

In summary, we have found it beneficial to characterize the customer, the developers,
the product and the technical environment by creating two profiles and then suggesting
use of the resulting chart shapes to devise an appropriate starting software process for
projects. The determinants presented here are examples of what could be done in any
given setting – the actual choice of dimensions would be left to the person or
organization performing the process configuration. With the profiles prepared, the
process configuration can occur as part of a workshop at the beginning of the project. A
proposed process for completing the configuration is presented in the next section.

3 Proposed Configuration Process

A person or team that has above-average communication and analysis skills is needed
to complete the process configuration. Much of the information to be collected in
order to construct the profiles is not readily available – it will take a number of
interviews and a healthy dose of interviewing skill to be able to accurately assess
many of the dimensions. In particular, the profile dimensions related to project
histories and experience level. Few people want to talk about previous projects that
have gone badly, even in project retrospectives. To obtain this information early in a
new project may therefore require advanced communication skills.

In this section, we will discuss when a software process should be configured and
the following steps in detail: profiling the project context, aligning the key practice
areas with the profiles, preparing the team for the project, running the project, and
then checking the configuration at regular points throughout the project. Configuring
a process to suit a project is one of the highlights of Cockburn’s work in [7].
Essentially what the process ‘configurator’ is seeking is a set of levers that can be
adjusted, ultimately creating an initial process that the team can use as a starting
point. The inputs to setting the ‘levers’ are the profiles discussed above.

3.1 Step 1 – Profiling

This step consists of conducting the necessary interviews, workshops, meetings, so
that the customer, developer, and product profiles can be built. This may be difficult
for a number of reasons. First, the customer may not be readily available for profiling.
In competitive bidding, for example, the suppliers have to somehow envision the
customer and product profiles based on the information they are given in the Request
for Proposal (RFP).

 Configuring Hybrid Agile-Traditional Software Processes 109

In other situations, the profiling step can easily be incorporated into the existing
scoping and requirements identification steps. Workshops set up to craft the first-stage
business models and any other information-gathering sessions that are conducted can
include considerations for gathering the profile information. Another guideline is that
anything that would be useful for estimating is also useful for process configuration –
especially in terms of risk. In this paper, we’ve avoided mentioning risk since its role in
process configuration is well described in [2]. The intent there is that any dimension is
a risk if it gets assessed as outside of the “home ground” that is ultimately chosen for the
project.

3.2 Step 2 – Aligning

Aligning the process to the profile has been simplified in [2], making it sound like a
simple binary decision between plan-driven and agile, and that anything in between
can be handled as a risk. This warrants further discussion, and to handle that
discussion in meaningful pieces, we have to break the project activities down further.
The goal is to define a set of ‘levers’ that can be adjusted to define a process that will
deliver a desirable product, and there are many aspects of that ecosystem that can be
tailored and adapted. It’s not an “all or nothing” decision. There is even a strong
argument for suggesting that much of the future enterprise development will be done
using hybrid agile and plan-driven methods [7].

We propose using some of the Capability Maturity Model (CMMsm) Key Practice
Areas (KPA) as the basis for identifying project activities that can act as the ’levers’
for configuring the software process. The CMM KPA’s that are organizationally-
focused (technology change management, process change management, organization
process focus, organization process definition, and training program) are excluded
given that we’re configuring a process for a project, not an organization. Similarly,
defect prevention and software quality management are excluded on the basis that
they don’t have agile and plan-driven extremes, unlike other engineering-related KPA
(product engineering and peer reviews). We have also added iteration duration to the
list given that we have witnessed organizations use it as a benchmark of agility for
their active projects. The set of activities that we have used is listed in Table 1.

Table 1. Project activities based on the CMM Key Practice Areas (KPA) can be used as
‘levers’ that the team or ‘process configurator’ can adjust to match the project context

Project Activity More Agile Less Agile
Iteration Duration 2 weeks or less 8 weeks or longer
Requirements Management User stories on cards Use case descriptions
Software Project Planning Entire team involved PM/Tech Lead involved
Software Project Tracking Burn-down charts, tests Earned Value
Software Quality Assurance Entire team involved Separate team
Software Configuration Mgmt Continuous integration Periodic integration
Peer Reviews Pair Programming Formal Inspection
Product Engineering Test-driven Test-last

Iteration duration was added to the list because of its impact on the overall
approach taken to the project. Shorter iterations imply a more advanced level of

110 A. Geras, M. Smith, and J. Miller

agility. Not all agile teams are able to sustain short-duration iterations such as 1
week. For most teams, even 4-week iteration durations are challenging at first, until
the team gains some practice and establishes an increasing number of lean techniques.

Change management and release management were mentioned as primary concerns for
many project teams. In terms of the KPA, change management fits mostly in Require-
ments Management and release management fits mostly in Software Configuration
Management. There are significant differences between “low ceremony” and “high
ceremony” change/release management. The high influencers for change/ release manag-
ement are going to be the cultural dimensions and the developer technical skills. A low-
ceremony change management approach would use more face-to-face conversations to
describe changes and a prioritized feature list to maintain the order of new and changed
features as compared to the existing backlog. A high-ceremony change management
approach would involve completing a change request form and basically instantiating a
workflow to qualify, approve, schedule, and assign the change. There may even be
monetary compensation involved for making approved changes in a high-ceremony
change management approach. Developer skills are a high-influencer because of the
extent that agile teams automate the build process – some teams implement the agile
practice of “continuous integration” using solutions such as Cruise Control that creates a
new build and runs associated tests on every source code check-in event. However, these
approaches have a steep learning curve.

The first activity to be aligned to the profiles is iteration duration. This assumes
that at least some form of iteration is going to be used, a relatively safe assumption.
Few organizations are willing to plan for a completely non-iterative project. Instead,
the question has really turned into a debate over the length of the iteration more than a
decision to develop iteratively or otherwise. To align the iteration duration with the
profiles, the first step is to look at the ‘high influencers’ – that is, the profile
dimensions that influence the iteration duration the most.

The high-influencers for iteration duration are probably customer bias, customer
motivation, culture, customer agile skills, developer bias, developer agile skills,
volatility, uncertainty, and criticality. You can use either another Kiviat Diagram or a
weighted ranking to determine the final outcome. As Boehm suggests, if any of these
dimensions fall outside the stated decision, then they can be handled as risks [2].
Once the high-influencers are identified and ranked, then the optimal iteration length
can be derived from the rankings. The underlying assumption here is that you
decrease the length of the iterations if you can, to a minimum of 1-2 weeks.

Once iteration duration is configured then the other KPA can be configured using
similar steps. The Change and Release Management KPA are closely related to
iteration duration, so it might be appropriate to configure them next, but at the end of
this step, all of the KPA should be addressed holistically to ensure that the proposed
configuration of each one of them is appropriate – again bringing up connotations of
Highsmith’s ecosystem [9,10].

The ecosystem approach to the practices within a team is particularly acute in
considering the Product Engineering KPA. In this area, requirements analysis, design,
construction and testing are all considered as related activities. Taken together, the
activities could implement a test-driven development, or a highly iterative test-last
method. To establish a thriving ecosystem, the configuration of the product engineering
practices then has to be integrated with the other KPA, in particular the Quality

 Configuring Hybrid Agile-Traditional Software Processes 111

Assurance, Software Configuration Management, and Project Planning and Tracking/
Oversight KPA. The high influencers on the Product Engineering KPA are the
developer technical skills, the developer experience level, the developer’s domain
knowledge, and the volatility and uncertainty associated with the product.

In conclusion of the Aligning step, the team should have a shared vision of the
development workflow. It might even make sense to informally model this workflow
and display it publicly so that the team has an easily accessible depiction of the workflow
to discuss. The underlying sensibility of the workflow is “practice makes perfect” – so
that once development begins, the team can start practicing the intended workflow and
over time – get better and better at it, fine-tuning it as the project proceeds.

3.3 Step 3 – Preparing

Even if the team actively participated in the process configuration profiling and
aligning steps, they may still need to be prepared in order to make the envisioned
process a reality. The best way to complete this preparation is by running Iteration 0
– an iteration that delivers nothing of value to the customer but allows the team some
practice time. This is especially critical if all the members of the team are not familiar
with all the underlying tools. The length of Iteration 0 does not have to conform to
the same length as the rest of the development iterations - if it extends beyond two
weeks, there is probably something else going on other than preparation.

3.4 Step 4 – Running

Once prepared, the development iterations can be launched, and the team can start
performing the activities that comprise the envisioned workflow. As the team
completes the workflow, their progress should be measured in an unobtrusive manner
in order to feed the next phase, checking.

3.5 Step 5 – Checking

Checking is confirming that the current process and development workflow is
optimal. This should be done periodically, probably at a greater frequency than
iteration cycles (especially, if the iteration length is longer than 4 weeks). Checking
enables the entire team to assess the earlier rankings and to fine-tune the development
workflow and project technical processes as required.

3.6 Challenges

Configuring the process in this manner is difficult for a number of reasons, but the
greatest danger comes from not knowing the individuals that will comprise the team
at configuration time. Many software development organizations don’t make explicit
resource plans until after the project is confirmed. In competitive bidding situations,
for example, the project configuration is done and offered to the customer as part of
the bid process. Placing personnel on the team then has to be done with the promised
software process in mind. In addition, the development team may not meet the
individuals that will ultimately fulfill the customer role on the project until the project
is launched. This will make tailoring the process for their personal bias impossible.

112 A. Geras, M. Smith, and J. Miller

Other challenges to this process are on the relative uncertainty over the influence of
certain dimensions. Take the ‘Motivation’ dimension of the developer profile as an
example – there are sure to be differing opinions on how to deal with this. Some will
say that an agile approach is better for dealing with this since then the effects of the
low motivation (poor productivity) would be noticeable sooner. Others will say that
the ‘empowered teams’ of agile is less likely to be effective when the team members
have little motivation. This is just an example – the point is that the influencing
dimensions and their effects are probably not universally applicable.

4 Future Work

The proposed configuration process is being used in an industrial setting in two ways
– to configure projects as outlined here, and to help existing teams create a test
strategy that matches the existing project context. A qualitative analysis of these
projects will follow pending ethics and the participating companies’ approvals.

5 Summary

Boehm and Turner specified five dimensions – size criticality, dynamism, personnel,
and culture as the keys to finding a project’s “home ground” [2]. This home ground
represents the optimal balance between agile and plan-driven processes, with the
exceptions being managed as risks. This approach is an exceptional contribution to
the notion of tailoring the software process to match the project context. In this paper,
we have extended the tailoring process in two ways – by first articulating dimensions
of more resolution and second by proposing a process for conducting the
configuration that considers the additional dimensions and the key practice areas that
they might influence.

The underlying assumption is that hybrid projects are most likely to be the primary
means that large organizations will be using to deliver working software to their users
for the foreseeable future. Purely plan-driven processes are increasingly rare. Even if
they are advertised, they are less likely to be followed to the letter. Even traditionally
non-agile companies are starting to try out some aspect of agile software development.
Based on this increasing need, a strong understanding of the relationship between the
configuration criteria (dimensions) and the key practice areas is required. If we have
this understanding, then we have a better grip on what sort of process might be optimal
for any given customer/developer and product/environment combination.

References

[1] Correia, J. Recommendation for the Software Industry During Hard Times. Gartner Data-
quest Report, June 6, 2002.

[2] Boehm, B. and R. Turner (2004). Balancing Agility and Discipline: A Guide for the
Perplexed. Toronto, Addison-Wesley.

[3] DSDM Consortium. (2005). DSDM Lifecycle. DSDM Consortium. http://www.dsdm.org/
tour/process.asp. Accessed 2005.

 Configuring Hybrid Agile-Traditional Software Processes 113

[4] Highsmith, J. (2005). AgileVsSelfAdapting. Alistair Cockburn.http://alistair.cockburn.us/
crystal/wiki/AgileVsSelfAdapting. Accessed 2005.

[5] Cockburn, A. (2000). Just-In-Time Methodology Construction. Alistair Cockburn. http://
alistair.cockburn.us/crystal/articles/jmc/justintimemethodologyconstruction.html.
Accessed 2005.

[6] Beck, K. (1999). Extreme Programming Explained. Don Mills, Addison-Wesley
Publishing Co.

[7] Cockburn, A. (1999). A Methodology Per Project. Alistair Cockburn. http://
alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.html. Accessed 2005.

[8] Barnett, L. and U. Narsu (2003). Planning Assumption: Best Practices for Agile
Development. Cambridge, Mass., Forrester Research, Inc.

[9] Highsmith, J. (2004). Agile Project Management. Toronto, Addison-Wesley.
[10] Highsmith, J. A. (2000). Adaptive Software Development. New York, Dorset House

Publishing Co., Inc.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 114 – 122, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Rolling the DICE® for Agile Software Projects

Bartłomiej Ziółkowski1 and Geoffrey Drake2

1 Nokia Networks
Düsseldorf, Germany

bartlomiej.ziolkowski@nokia.com
2 Managed Design

UK
geoffd@mandes.com

Abstract. The DICE1 framework provides means for predicting the outcome of
change management initiatives. The four factors: duration, integrity, commit-
ment, and effort are evaluated and a score is calculated. The DICE® score is
used to classify projects into win, worry, or woe zones. In this paper, we apply
the DICE® framework to predict the outcome of a software project that is
migrating from waterfall to agile practices. We propose fine-tuning of the four
factors to improve the score and show how to use DICE® for communication
with the stakeholders. Finally, we make a claim that evaluation against the
DICE® framework confirms that agile projects have a higher chance of success
than traditional waterfall projects.

1 Introduction

Despite the success of the software projects following the iterative & incremental
development processes [1], most of the big companies still use pure waterfall
methodologies or at least the ones that give a feeling of command-and-control. We
recently carried out research on the software job market. This showed that among the
biggest and most successful software development companies only one was actively
looking for project managers that are familiar with IID practices. Developers have it a
bit better as there are many openings for people familiar with, for example, eXtreme
Programming [2]. That opens a question of how agile programmers are managed.

Currently, we are involved in a change initiative at one of the top telecommuni-
cation companies where the goal is to use agile software development practices to
create a new product. Previously, the company followed a strict waterfall process that
led to long delays. Moreover, the developers were not familiar with agile practices
and did not regularly present the results of their work to the stakeholders. The change
was driven by middle management and upper management agreed to try out strict
time boxing and IID methodology to increase the rate of software delivery.

Whilst the change came from the software group, we searched for a general change
management evaluation technique. Change is not simply a software problem and we
needed to convince business people that agile methodology would introduce higher

1 DICE is a registered trademark of The Boston Consulting Group, Inc.

 Rolling the DICE® for Agile Software Projects 115

level of success. This also would help us to prove that agile is not just hype but has
sound business roots for its success. During this search, we came across DICE® from
The Boston Consulting Group [4].

2 The DICE® Framework

Every change initiative is a painful process for an organization. Despite the common
understanding of the need for constant change in every aspect of human life, the
changes in organizations are usually not welcome. Most of the time people in affected
organizations believe that a little tweaking here and there would solve the biggest
problems whereas the change initiators (i.e., the management) strive to change
everything. Sometimes it is the opposite, people expect an organizational shake-up
and the management proposes just touching the surface.

In order to address people’s issues, there should be enough focus on the soft
aspects of change management like culture, leadership, and motivation [5]. As much
as those elements are important, focusing on them does not guarantee the success of
the initiative. Moreover, the soft aspects are hard to qualify and measure.

The hard factors of change management like time, resources, and business goal are
easier to measure and organizations are more often able to influence them quickly.
The research shows [3] that companies not paying enough attention to the hard issues
are bound to fail even if the soft factors are handled properly.

The DICE® framework [3], created by The Boston Consulting Group, provides a
means for predicting the outcomes of change initiatives and is based on evaluation of
the hard issues, namely:

• The duration (D) – either the time needed to complete the change initiative, or
the time between reviews or milestones.

• The integrity (I) – the project team’s ability to complete the initiative on time.
• The commitment of the management team (C1) and the commitment of the

people affected by the change (C2).
• The additional effort (E) that employees must make to cope with the change.

In order to calculate the DICE® score, the following equation is used:

DICE® Score = D + (2 * I) + (2 * C1) + C2 + E (1)

For every factor the score from 1 to 4 is used, where 1 is the best and 4 is the worst
score. The resulting DICE® score is in the range from 7 to 28.

In the Figure 1, the DICE® scores and the actual outcome of 225 change initiatives
are plotted [3]. The highly successful projects had the DICE® score between 7 and 14
and are in the Win zone. The projects with scores between 14 and 17 were more
unpredictable and are in the Worry zone. The projects in the Woe zone had the DICE®
scores above 17 and were more consistently unsuccessful.

Since the completion of the initial study, the BCG has used the DICE® factors to
predict the outcomes and support the execution of more than 1,000 change
management initiatives all around the world and in a broad range of industries. So far,
no other hard factors have been found that predict outcomes nearly as good at the four
DICE® factors.

116 B. Ziółkowski and G. Drake

DICE Score

A
ct

ua
l O

ut
co

m
e

7 28

H
ig

hl
y

un
su

cc
es

sf
ul

H
ig

hl
y

su
cc

es
sf

ul

14 17

WIN WORRY WOE

1 1 2 5 3 7 1 4 7 6

1 1

1

1 1

5 6 3 1 1

1 2 1 4 9 14 9 2 9 1 8 5 1 1

1 1

2

2

5

1

1 2 1

2 2 1613914

2 2 211

15111 6 1 3 1 4 1

1 1 1 1

1231521111

Fig. 1. DICE® scores of 225 change initiatives [3]

3 Applying DICE® to Agile

Any change brings about conflict and turmoil as people try to reconcile new ways of
working and integrate the new techniques into their current skill set. In addition, these
techniques are rarely introduced in propitious circumstances; projects are invariably
under a variety of pressures and under stress people inevitably revert to working
patterns that they are familiar with. Introducing agile for the first time is no exception
and we felt that utilizing DICE® would give us an indication of the areas that would
need closer supervision during the process.

Our initial application of DICE® was at a general level against the two agile
practices we planned to use, Extreme Programming and Scrum [8]. Table 1 shows the
basic characteristics of XP, Scrum and Waterfall against the criteria laid down by the
DICE® framework.

In DICE®, a project with an index of between 7 and 14 is considered a Win, 14 –
17 is a Worry and 17 – 28 is a Woe. Using the base values given for the DICE®
criteria in Table 1, both the agile practices evaluated to 9 whilst a waterfall-based
project is 20. This does not mean that a waterfall project will invariably fail, or that an
agile based project will definitely succeed, but it does illustrate that given equal
circumstances an agile based project has a better chance of succeeding than the same
project run under a waterfall methodology.

The more interesting exercise was to perform a DICE® evaluation of the overall
goal of the project, the introduction of XP and Scrum.

 Rolling the DICE® for Agile Software Projects 117

Table 1. XP and Scrum versus Waterfall

DICE® Criteria XP Scrum Waterfall
Duration Delivery in one to

four weeks. Team
meeting daily.

Delivery in one
month. Daily review
of progress.

Long duration of
each phase.
Milestones far apart.

D Factor 1 1 4
Integrity Team is self-

organizing, people
only commit to
work they have
skills for.

Team is self-
organizing, people
only commit to
work they have
skills for.

A process cannot
start until the
previous one is
completed. Team
composition changes
based on the current
phase of the project.

I Factor 1 1 2
Management
Commitment

Good. Frequent
involvement of
customer and
product
management in
decision process.

Good. Product
Owner decides on
what is in each
phase. All
stakeholders review
progress

Reviews of progress.
'Lines written'

C1 1 1 4
Team Commitment Reinforced

working practices.
Everyone commits
to his or her tasks
and only to tasks
they can do.

Daily commitment
to team actions.
Processes to supply
input to team.

Mainly written
documents between
phases. Good
between team
members.

C2 (Team) 2 2 3
Effort More effort writing

tests, pair
programming.
Design as you go.

Design as you go.
Review meetings.

Effort considered as
normal.

E 2 2 1
DICE® Factor
 = D + 2I + 2C1

+ C2 + E
9 9 20

The development team consisted of some employees who were experienced
programmers and some fairly new employees who were relatively new to the com-
pany, but had good programming skills. There were also a number of consultants who
were selected for their high programming skills, some had utilized eXtreme Pro-
gramming on previous projects, some had not, but all expressed an interest in trying
out XP. One of the consultants was employed specifically because he had strong XP
coaching skills.

Taking these circumstances into account we determined the overall DICE® factors
shown in Table 2.

118 B. Ziółkowski and G. Drake

Table 2. DICE® score of the agile project

Criteria Factor Comment

Duration 1 Series of 5-week iterations, with intense Sprint
Planning and Sprint Review sessions at the start
and finish.

Integrity 2 Most team members keen to utilize agile, some
reluctance from one or two. Tendency to revert
when pressures high.

Management
Commitment

2 Fair. Strong initial focus and support from high
management. Good long-term support from team
management.

Team Commitment 1 Excellent. Team members interact well, good
communications on technical matters.

Effort 2 Good effort put in at the start of the project. More
perceived effort in putting XP practices in place.

DICE® Factor
= D + 2I + 2C1 +
C2 + E

12 That clearly puts the project in the Win zone.

4 Fine Tuning the Factors

From the conception of the project there was a strong commitment and focus, so the
result of the DICE® evaluation came as no great surprise but it did give us a worse
position than we originally anticipated given the original Scrum and eXtreme
Programming evaluation (cf.: Table 1). Decisions were made to introduce some
activities that would reduce the values for some of the factors. We considered the
impact on the DICE® parameters of each change before we carried it out and only
implemented changes that would have positive impact on the values.

Our iteration length was strongly time boxed by the main project schedule and
could not be altered. However, it was felt that intensifying the Sprint Planning and
producing higher detail story-based tasks [6] would improve the commitment to the
project, both at management and team level. We also made the results of the daily
automated build, unit and FIT-like [7] end-to-end testing available on the internal
web. This helped to make the project progress more visible to management and had
the effect of improving the integrity of the team. No one wanted to be the one with
failing unit tests in the daily build.

The application of DICE® gave us a good feel for the areas that we needed to
concentrate on, other projects may not have the strengths that we had in different
areas. Given the weighting of the factors concentrating on Integrity and Management
Commitment would give the project a more significant improvement than focusing on
Duration, Team Commitment, or Effort. However, some of these are easier to
work on.

 Rolling the DICE® for Agile Software Projects 119

4.1 Duration

We had a four-week iteration plus one week of review and planning. Halfway through
the iteration there was a sanity check to review our ability to meet the iteration goal.
Moving to a one week cycle with weekly planning as recommended in [2] was not
recognized as an improvement if it comes to DICE®. If the time between project
reviews is less than two months, the project gets the maximum Duration value of 1.

4.2 Integrity

Some ways of increasing the team’s integrity would be to drive home the advantages
of eXtreme Programming practices, like test-driven development [9], to increase
developers’ confidence and ensuring that the team gets good coaching in them.
Skilled Scrum masters [10] effectively remove the impediments, motivate the
developers, and make sure that code quality reaches the acceptable standards. They
also ensure that the team maintains the optimum momentum.

The weight of Integrity is high in the DICE® framework and only having a capable
leader, skilled and motivated team members working more than 50% of their time on
the project gives a maximum value of 1 to Integrity score.

4.3 Senior Management Commitment

Making internal review processes visible and that the goals are being met helps to
increase management participation in the project. We had a senior manager host the
end of iteration demonstration to all the stakeholders in three countries
simultaneously, more than 100 people each month saw what we had achieved in that
iteration.

The weight of this factor is high in DICE® and senior management commitment
shall not be underestimated. In case the agile practices are introduced by the senior
management (i.e., top-down approach) this factor gets a maximum score of 1. If,
however, the agile practices are driven by the development team (i.e., bottom-up
approach) the initial score of 4 applies and the team leader’s main goal should be to
increase senior management commitment.

4.4 Team Commitment

Listening to and, responding to problems quickly, especially in the daily stand-up
meetings has a positive effect on the team. At the end of iteration, everyone in the
team participated in the Sprint Reflections session where problems got aired and
resolved. The first level management took these reviews seriously and that helped to
increase the team commitment factor.

Ensure people get variety of in what they are doing. We needed a large amount of
documents to communicate our interfaces to associated projects and we made sure
that several people wrote them, so no single person got locked into doing just
documentation.

The Team Commitment factor is valued as 1 if the team is eager to take on the
change initiative. If the team is only willing the score is 2. By responding to problems

120 B. Ziółkowski and G. Drake

quickly and by ensuring tasks variety, the leader is able to change team’s willingness
into eagerness and drive up the score.

4.5 Effort

One concern early in the project was over the time spent pair programming.
Programmers were loathed to do it due to the perceived increase in the time to complete
tasks. We addressed this in the effort estimates by reducing the number of Ideal
Engineering Hours [1] available per day. Instead of 4 hours a day we reduced the
number to 2.5 and that allowed for pair programming hours in the overall project plan.

A second issue was to make sure that only what was needed at that point of time
was written. There was a tendency by some of the more experienced programmers to
make the initial implementation more complex than strictly necessary. We addressed
this issue by introducing and coaching test-driven development [9] and encouraging
the architects to use the agile modeling practices [11].

Despite the long-term benefits of pair programming that include knowledge
sharing and buddy-reviews of the code, the initial effort for learning and coaching
was more than 10%. Hence, the score 2 for our project. As soon as the test-driven
development and agile modeling levels out the additional cost of pair programming,
the DICE® score for Effort factor will reach its maximum value of 1.

5 Limitations of the DICE® Framework

A major weakness of the DICE® framework is the subjectivity of the scoring. There
are no hard and fast rules for assigning of the scores, and their values depend more on
the skills of the evaluators than any rigid criteria. In our case there was a large amount
of experience in both Agile and Waterfall projects and whilst the figures were
subjective they were backed up with long-term experience.

One method to overcome this would be to adapt one of the Agile estimating
techniques, such as the Wideband Delphi [12] or the Planning Poker [13], and use that
to obtain a consensus figure for each value between all the evaluators.

Another limitation of the DICE® framework is its simplicity. The method does not
deal with the soft change factors, although they are important.

In order to overcome the limitations of the framework, the evaluators or the change
agents should calculate the DICE® scores for the on-going project at the end of every
iteration. That would give a continuous picture of the odds of the change initiative.

Finally, to provide a broad assessment of any change initiative, the change agents
should use more than one evaluation technique. Hence, the use of DICE® framework
can be coupled with, for example, the application of the Formula of Change [14], to find
out if the change is possible on the general level. This formula provides a model to
assess the relative strengths affecting the success or failure of the organizational change
programs. The change is only possible if the product of three factors: dissatisfaction of
how things are now, vision of what is possible, and initial, concrete steps that can be
taken towards the vision, is greater than the resistance towards the change.

Another technique to be coupled with the DICE® helps determining the relative
suitability of agile or plan-driven methods for a particular project. It is based on

 Rolling the DICE® for Agile Software Projects 121

evaluation of the Five Critical Factors [15], which are the project’s size, criticality,
dynamism, personnel, and culture factors. This technique does not explicitly predict
the outcome of change initiatives but helps finding out if going agile is a good idea, in
the first place.

The last option would be to use a formal evaluation method such as the Capability
Maturity Model for Software (SW-CMM) [16]. However, the authors feel that this
method is too heavy-weighted for Agile projects. The application of the DICE®
framework coupled with the evaluation of the Formula of Change and the Five
Critical Factors should be sufficient for most of the projects.

6 Conclusion

The results of applying the DICE® framework to agile projects came as no surprise to
us as we were acting as change agents and our opinions were biased. However, it was
essential to evaluate the change initiative using the tools coming from the outside of
the software development world in order to communicate the need of change to senior
management and gain their commitment.

The weakest factor of waterfall projects is the time between project reviews or
milestones, which can span from 3 months to more than a year (D=4). The manage-
ment commitment is weak as waterfall projects are recognized as ‘business as usual’,
i.e., if there was a strong need for a change, very likely some other practices were
used (C1=4). There is usually no additional effort as the working practices are pretty
much the same as in previous projects (E=1). A team’s commitment and its ability to
accomplish the goal depend on the same factors as within the agile projects.

From the Equation 2 it is visible that the overall DICE® score for waterfall projects is
north of 19 (assuming the average values of 2 for integrity and team’s commitment).
Hence, such projects are in the Woe zone and have low chances of success.

Waterfall = D + (2*I) + (2*C1) + C2 + E = 4 + 4 + 8 + 2 + 1 = 19 (2)

The strongest factor of agile projects is the duration, as the time between reviews
varies from one to five weeks (D=1). There is usually some additional effort due to
learning curve connected to new working practices (E=2). If the team drives the
change initiative, then the team commitment factor gets the maximum score (C2=1)
and the senior management commitment is recognized as neutral (C1=3). Else, the
senior management commitment factor gets the maximum score (C1=1) and the team
commitment is average (C2=2). The integrity does not depend on the process so the
average score is taken into calculation (I=2).

Agile bottom-up = D + (2*I) + (2*C1) + C2 + E = 1 + 4 + 6 + 1 + 2 = 14 (3)

As the Equation 3 shows, the overall DICE® score for agile projects is, either south of
14 for bottom-up change initiatives (i.e., neutral senior management and top team
commitment), or south of 11 (cf. Equation 4) for top-down approach (i.e., high senior
management and average team commitment). Hence, the agile projects are in the Win
zone and have high chances to be successful.

Agile top-down = D + (2*I) + (2*C1) + C2 + E = 1 + 4 + 2 + 2 + 2 = 11 (4)

122 B. Ziółkowski and G. Drake

Based on our experience we claim that agile projects are better positioned for
success than the waterfall projects according to the DICE® framework. Moreover, we
hope that the readers will use the results of our study to drive the change initiatives in
their organizations and will fine-tune the four factors so that their projects are
successful.

References

1. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Addison-Wesley
Professional, August 2003

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, November 2004

3. Sirkin, H.L., Keenan, P., Jackson, A.: The Hard Side of Change Management, Harvard
Business Review, October 2005, pp. 108-118

4. The Boston Consulting Group, www.bcg.com
5. Kotter, J.P.: Leading Change: Why Transformation Efforts Fail. Harvard Business Review,

March 1995
6. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional, October 2000
7. Mugridge, R., Cunningham, W.: Fit for Developing Software. Prentice Hall, July 2005
8. Beedle, M., Schwaber, K.: Agile Software Development with Scrum. Prentice Hall,

October 2001
9. Beck, K.: Test Driven Development by Example. Addison-Wesley Professional,

November 2002
10. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, March 2004
11. Ambler, S.W.: Agile Modeling. John Wiley & Sons, April 2002
12. Stellman, A., Greene, J.: Applied Software Project Management. O’Reilly Media,

November 2005
13. Cohn, M.: Agile Estimating and Planning. Prentice Hall PTR, November 2005
14. Beckhard, R.: Organization Development: Strategies and Models, Addison-Wesley, 1969
15. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed.

Addison-Wesley, August 2005
16. Paulk, M., et al.: The Capability Maturity Model for Software V1.1. CMU/SEI-93-TR-24,

DTIC Number ADA263403. Pittsburgh: Software Engineering Institute, Carnegie-Mellon
University, February 1993

Agility in the Avionics Software World

Andrew Wils, Stefan Van Baelen, Tom Holvoet, and Karel De Vlaminck

K.U. Leuven DistriNet
Department of computer science

Celestijnenlaan 200 A, 3001 Leuven
{andrew.wils, stefan.vanbaelen,

tom.holvoet, karel.devlaminck}@cs.kuleuven.be

Abstract. This paper1 takes a look at how XP and other agile practices
can improve a software process for the development of avionics software.
Developers of mission critical airborne software are heavily constrained
by the RTCA DO-178B regulations [8]. These regulations impose strict
rules regarding traceability and documentation that make it extremely
hard to employ an iterative software development process. In particular,
the extra validation overhead increases the time spent on small iteration
cycles (for example, a bug-fix) to several weeks.

Currently, this sector is also pressed to switch to a more agile, cus-
tomer driven approach. In this paper we investigate how to speed up de-
velopment and cope with changing requirements using agile techniques.
The research was carried out in cooperation with Barco, a major Bel-
gian avionics equipment supplier. We explain why certain agile tech-
niques have less effect as the project progresses. We point out the stadia
in which each XP practice is beneficial and where XP practices might
cause a slowdown.

1 Introduction

The upcoming popularity of agile software development is creating a pressure
for application domains where less flexible software development processes are
currently used. The avionics software industry is experiencing demands for a
more customer oriented, agile software development approach. More specifically,
this industry is confronted with late requirements changes and asked to shorten
release cycles. While eXtreme Programming (XP) [1] and other agile practices
seem the obvious solution to deal with these demands, at the same time people
are cautioned and advised to consider a more disciplinary approach for the devel-
opment of mission-critical software. For example, Boehm and Turner [3] advise
a more plan-driven approach when the software could involve loss of lives. Al-
istair Cockburn’s crystal methodology [5] states that increasing criticality level
means increasing the hardness of the method, resulting in more rigor, tighter

1 The described work is part of the EUREKA-ITEA AGILE project, and partly funded
by the Flemish government institution IWT (Institute for the Promotion of Innova-
tion by Science and Technology in Flanders).

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 123–132, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

124 A. Wils et al.

control and less tolerance. Unfortunately, due to a lack of experience with life-
critical software development, the crystal level L (Life critical) is not discussed in
more detail. The fact that people suggest a plan-driven approach does not nec-
essarily indicate a lack of trust in agile methods, but more an observation that
certain plan-driven methods have been proven to provide software that passes
certification.

Indeed, the mission critical nature of this software has lead to stringent pro-
cedures and plans that could specifically exclude the use of agile methods. In
this paper, we will show that for the avionics software world, agile improvements
can be made while still respecting the RTCA DO-178B certification guidelines.
To verify this, we worked together with the Belgian avionics equipment supplier
Barco for a thorough analysis of a DO-178B compliant software process. The
company was assessed with the following goals in mind:

– show how to optimize the software development process and still have full
documentation and traceability at the end;

– enable late integration of requirements changes with minimal re-verification
efforts.

While this assessment was focused on the DO-178B standard, our findings may
be useful in general for mission-critical software development.

The paper itself is organized as follows. The next section takes a closer look
at the DO-178B standard. This document imposes the most important software
development constraints for the avionics sector. We explain in Section 3 how we
came to the results of our study. We looked at team activities, team communica-
tion, the software process structure, project artifacts and project management.
We found that a modified XP based process can shorten iteration cycles, pro-
vided that a number of technical obstacles can be solved. The availability of
the right tools will be even more important than in traditional agile software
development. The results are broken down in an analysis of the agile princi-
ples in Section 4 and a discussion of agile opportunities throughout the entire
development process in Section 5.

2 Avionics Software Development

Avionics software development is heavily constrained by a simple, yet inflexible
goal: to prevent the loss of human lives. This mantra rightfully adds suspicion
to anything that may compromise the safety and security of aircraft personnel
and passengers. For software, this resulted in the establishment of some strict
guidelines for the development processes. Produced by Radio Technical Com-
mission for Aeronautics, Inc. (RTCA), the DO-178B document has become the
de facto standard of such guidelines. The USA’s Federal Aviation Administra-
tion and many other national certification authorities regard this document as
a necessary means to certify avionics software; this is specified in FAA Advisory
Circular 20-115B.

Agility in the Avionics Software World 125

The DO-178B document dates from 19922. Fortunately, it does not impose a
specific software development life-cycle process. The document specifies (a) ob-
jectives for software life-cycle processes, (b) descriptions of activities and design
considerations for achieving those objectives and (c) descriptions of the evidence
that indicates that the objectives have been satisfied. In practice, this requires
the delivery of multiple documents and records to verify traceability and testing
of all requirements. These documents include:

– plans for verification, quality assurance and development;
– all requirements, software and the source code tree;
– problem reports, verification cases, procedures and standards.

The objectives are grouped according to levels of potential danger if the devel-
oped software should fail: A (catastrophic), B (hazardous-severe), C (major), D
(minor), or E (no-effect). The most stringent levels (A and B) demand amongst
others:

– independent reviews of tests and of requirements compliance;
– traceability of system requirements to the source code.

In addition, the DO-178B standard includes strict guidelines concerning tool
use and reuse of software. If software artifacts are reused between projects, the
certification evidence of these artifacts should be integrated in the certification
evidence of the new project. It should also be of the correct rigor required for
the targeted safety level. If a tool is used that in one way or another eliminates
or automates compliance to certain objectives, certification evidence for such a
tool is also required. A distinction is further made between verification tools and
development tools. Certification evidence for a development tool should be of the
same rigor as required for the targeted safety-level as such a tool can directly
introduce a bug into the airborne-system. A verification tool may be developed
to a somewhat lower standard as it can only fail to detect a bug in the airborne
system.

3 Industry Assessment

The avionics division of Barco develops man machine interface solutions for the
avionics domain. Barco desired to improve the time-to-market and wanted to
respond more quickly to customer requirements changes. However, it turned out
that an agile methodology such as XP did not offer the necessary improvements,
mainly because it addressed problems that were entangled with other aspects of
avionics software development, and the DO-178B standard. We then performed
an assessment consisting of the following activities:

– seminars and workshops about the DO-178B standard and the internal soft-
ware process;

2 A newer version is being prepared and will be called DO-178C.

126 A. Wils et al.

– short interviews with all team members and longer discussions with devel-
opers, project leaders, selected team members and reviewers;

– visits to development labs and plant.

Apart from this, Barco performed an analysis of the impact of software changes
and did an internal survey to find productivity impediments.

While looking for bottlenecks in software development, we found that devel-
opment gets more and more dependent on hard to control external factors as
the software project progresses. An example factor is hardware co-development.
While software development could be made on a simulated hardware platform,
testing for certification always needs to be done on the final product. For exam-
ple, automated environmental tests can still take up to several days. We will see
that these factors have a major impact on the overall agility of the project.

4 Agile Principles

The agile principles lie at the heart of most agile methodologies. They are defined
alongside the Agile manifesto [2]. Before trying to bring agility into a software
process, we first check whether the agile principles support avionics software
development. Also, they must not contradict or interfere with the DO-178B
standard. It turns out that most principles can be applied in a certification driven
process without any changes. We needed to reinterpret 3 principles. However
subtle these changes are, they will still have an effect on how agility can be
applied to an avionics software process. These are the subtle yet important
comments on the principles:

Principle: Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.
This principle applies, but valuable avionics software means software suitable
for flight operation and eventually certification, which needs much more work
than the ordinary, “tested” software that was targeted by this principle.

Principle: The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.
This principle applies, but much information that is exchanged needs to
be logged and documented. Face-to-face, informal communication is hard to
capture in documents, and could in fact contradict the produced documents.

Principle: Working software is the primary measure of progress.
This principle only partly applies: certification leads to additional non-
software milestones in the project.

Principle: Agile processes promote sustainable development. The sponsors, de-
velopers, and users should be able to maintain a constant pace indefinitely.
The avionics sector is indeed trying move to a more constant development
pace. However, the next section will show that this cannot be maintained
indefinitely.

Agility in the Avionics Software World 127

5 Agility Analysis and Opportunities

To see what bottlenecks we can alleviate with agile techniques, consider Figure 1.
Since a traditional software process suffers from its complexity, the effort needed
to add functionality increases as the project progresses. This defines the Boehm
curve that is already 20 years old [4]. Agile processes such as XP aim for an
ideal, flattened curve, allowing a constant development pace [1].

At the beginning of a project, certification driven software development follows
these curves. We call this the software phase of the project. A first divergence
can be seen in the figure when deployment tests begin: the software is prepared
to get tested in the field. Here, the process slows down because of hardware
dependencies and (partly automated) acceptance testing. These issues are com-
mon in embedded software development (e.g., see [7]). Hence, we call this the
embedded phase. An even more significant slowdown is encountered when the
software is ready to be certified. In this stadium, that we call certification phase,
the software is presumed bug-free, but much documentation and manual testing
is needed to provide the artifacts that are necessary for certification.

deployment
tests

traditional DO 178B

ideal

Agile DO 178B

project time

change effort

certification
tests

traditional

software
phase

embedded
phase

certification
phase

certification
label

Fig. 1. Software processes compared

For simplicity, the figure does not indicate what happens after the certifi-
cation itself, after which every modification needs to be recorded in a change
request. Even more, the impact on all artifacts needs to be analyzed and docu-
mented.

Table 1 presents for every phase what XP practices can be applied. In addition,
we discuss the most important agile opportunities for every phase. Together with
the risks and weaknesses they define a new curve for an agile DO-178B driven
process.

128 A. Wils et al.

5.1 Software Phase

Software development in this phase is not yet affected by other issues or con-
straints - the software is developed independently. In this phase, all agile prac-
tices may be used. Requirements changes - even hardware changes - are wel-
comed. User and acceptance testing can be fully automated within the context
of the software.

5.2 Embedded Phase

In this phase, the software must be deployed and tested on the target hardware.
There are no fundamental reasons to abandon agility. However, there may be
some repercussions on activities that depend on the developed software as in-
put. Example activities include continuously installing the software on the target
hardware, retesting the hardware, environmental tests and generating documen-
tation. The opportunities in this phase mainly consist of automating these tasks.
Also, feedback and communication become more important in this phase, in or-
der to cope with the dependencies between and coordination of software and
other activities. Agile practices to consider for facilitating this are daily stand-
up meetings and post-iteration workshops.

5.3 Certification Phase

This phase brings with it many additional tasks that need to be executed upon
each software change. Code coverage and non-functional requirements (such as
maintenance) need to be analyzed. Traceability needs to be established and
manual testing and reviewing is required. The evidence of all these activities
needs to be collected and reported.

A logical measure here is to limit the amount of changes. First, to keep the
requirements changes to a minimum, the customer can write their own ac-
ceptance tests. Regarding traceability, there is an opportunity to handle and
manage documents more as source code, so that agile code-centric practices
can also be applied to them. In particular, one can apply the following
practices:

– auto-generate not only code, but as much documents as possible;
– include all documents in a version control system;
– manage their dependencies, so that it is immediately clear what document

parts are affected by an artifact change.

This will reduce the time spent on creating, managing and reviewing documents.
For documents that cannot be auto-generated, an agile document preparation
practice may be useful, such as RaPiD7 [6]. In RaPiD7, documents are made
in workshops where multiple stake-holders are present. Reportedly, it speeds up
the document development process significantly (with speedups varying between
15 and 96%).

Agility in the Avionics Software World 129

For independent reviewing, pair programming may offer a solution. In a way,
a paired programer continuously reviews the other person’s work. Frequent
changes in pairs should guarantee independence, as people get to see a lot of
other people’s mistakes and gradually become expert reviewers. Collective code
ownership also benefits this reviewing process.

The development of automatic test suites is an intensive task. Auto-generation
of test code will speed-up the testing process considerably. For manual accep-
tance testing, there is an opportunity to automate some tests, although this may
need special hardware. One would have to operate inputs (such as the control
panel of a flight display) and capture the output of the system (such as the pixel
values of a display).

6 Weaknesses and Risks

With the agile opportunities of the previous section, we considerably flatten the
steep curve of a regular DO-178B driven process, as Figure 1 shows. However, a
software process is as slow as its weakest link.

Agility relies on coping with complexity, and most agile practices focus on
software complexity. For the software itself, this benefits the project up to the
certification phase, because once software gets installed in production type air-
craft, it does not need to be updated that often.

As a project progresses, software changes create complexity that is not handled
by agile software practices. Managing traceability, even with requirements tools
(such as Telelogic DOORS) may remain difficult. It may not be possible to auto-
matically generate certain written documents. The earlier mentioned automation
using agile tools is has much less value if certification regulations require the results
of uncertified tools (for example, test suites) to be manually verified.

At a certain point in time, reducing complexity of the software may even cause
greater complexity, because of the ramifications on traceability, documentation
and testing. That is why practices such as refactoring are discouraged in the
certification phase.

To summarize, although we expect significant speedups by applying the agile
opportunities, a daily integrated system build process will most likely be un-
feasible once these external factors come into the picture. Hence, the principle
“Requirements changes are welcomed” will be hard to maintain in the certifica-
tion phase, if at all.

This defines the Agile DO-178B curve in Figure 1. It is not flat, since a
sustainable development pace will remain a hard to reach ideal for the avionics
domain. Still, great improvements can be made compared to the traditional way
of handling a DO-178B driven process.

7 Conclusions and Future Work

This analysis confirms that while a process such as XP can be applied to many
domains, it is targeted at software development processes that are not hindered

130 A. Wils et al.

by or dependent on factors external to the software. While general statements
cannot be made based on this single assessment, it seems that most agile prin-
ciples are still valid and beneficial in the avionics world. In addition, although
avionics software development is clearly dominated by the plans and documents
that go with it, there is room to apply agile practices. However, because of the
large certification overhead, it will not be possible to “flatten” the Boehm curve
[4] as XP evangelists claim. To show this, we defined 3 development phases in
which changes are increasingly hard to embrace. Thus, if agility is a must, it is
best to remain in the early phases as long as possible.

This said, our most important observations for improvement are the
following:

Software phase: communicate regularly and early in the development process
and deliver incrementally functional prototypes. This will reduce the re-
quirements changes later in the project, when they are more difficult to
apply.

Embedded phase: add more communication, transparency and feedback to
the project by applying project feedback based practices, such as daily meet-
ings and post-iteration workshops.

Certification phase: treat documents like source code and apply continuous
integration, ultimately enabling shorter iterations. For testing and reviewing,
apply pair programming, collective code ownership and test-first program-
ming.

Of course, most practices are already best applied at the start of the project.
Table 1 summarizes the suitability of XP practices for every phase.

In the future, we hope to further concretize the risks and utility of the
agile practices, select the best practices, and apply them in a number of
projects.

Finally, we state that as the pressure for iterative and customer driven software
development will further increase, the industry has no choice but to adapt their
processes accordingly. Not only the customer has to accept new responsibilities
for an agile approach to work. Certification authorities will need to acknowledge
that agile software development can yield software that is at least as safe as be-
fore. However, providing the authorities with evidence of this remains a task for
the industry. We can only guess the timeframe of these changes. As it took some
time for the certification authorities in order to accept certain object-oriented
development techniques for avionics software, we expect that agile practices will
soon also be recognized by the certification authorities as useful practices within
an avionics software development process.

Acknowledgments

We would like to thank the people from Barco for their time and feedback,
especially Stijn Rammeloo for his active participation in this assessment and for
his insights on the avionics software domain.

Agility in the Avionics Software World 131

References

1. K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 2000.
2. K. Beck and et al. Manifesto for agile software development. http://

www.agilemanifesto.org, 2001.
3. B. Boehm and R. Turner. Balancing Agility and Discipline: A Guide for the Per-

plexed. Addison-Wesley, 2003.
4. B. W. Boehm. Software Engineering Economics. Prentice-Hall Advances in Com-

puting Science & Technology Series, 1981.
5. A. Cockburn. Agile Software Development. Addison-Wesley Professional, 2001.
6. R. Kylmäkoski. Efficient authoring of software documentation using RaPiD7. In

ICSE ’03: Proceedings of the 25th International Conference on Software Engineer-
ing, pages 255–261, Washington, DC, USA, 2003. IEEE Computer Society.

7. P. Manhart and K. Schneider. Breaking the ice for agile development of embedded
software. In Proceedings of the 26th international conference on software engineering
(ICSE), 2004.

8. RTCA. DO-178B: Software considerations in airborne systems and equipment cer-
tification, 1992.

A Appendix

Table 1. XP practices (continued on next page)

Practice Description So
ft
w

ar
e

ph
as

e

E
m

be
dd

ed
ph

as
e

C
er

ti
fic

at
io

n
ph

as
e

Comments and risks
Customer
available

Customer is available for the
team to make questions etc.

× × × Commonly, avionics
development starts off
with a detailed require-
ments document from the
customer. This practice
could reduce the customer
start-up effort and move
back the start date for
a project to create more
room for development and
certification.

Metaphor Simple story of the purpose of
the application.

- - - A metaphor is not re-
ally necessary as the do-
main applications are very
similar.

Short releases The product is done in itera-
tive style and new versions are
“published” rapidly.

× × - This is a necessary prac-
tice, but difficult to main-
tain towards the end of the
project.

132 A. Wils et al.

Practice Description So
ft
w

ar
e

ph
as

e

E
m

be
dd

ed
ph

as
e

C
er

ti
fic

at
io

n
ph

as
e

Comments and risks
Planning
game

The way for customer and the
team to plan and communi-
cate which tasks are to be im-
plemented in each iterations.

× × × As the project advances,
this practice becomes es-
sential to limit change.

Pair
programming

Coding is done in pairs using
one computer.

× × × This practice could help
comply with the DO-178B
standard, because the lat-
ter mandates that all code
should be proof-read by a
separate person.

Collective
code
ownership

No one owns the code and ev-
erybody is allowed to change
any parts of the code.

× × ×

Unit testing Unit tests are written before
the actual code.

× × ×

Acceptance
testing

Customer writes the accep-
tance tests

× × × These tests could seri-
ously reduce further re-
quirements changes. Prob-
lems arise when testing
high level requirements, as
the DO standard states
the necessity for these to
be verified by a human be-
ing.

Refactoring Remove duplication and add
simplicity.

× × - This practice is not recom-
mended late in the devel-
opment process: refactor-
ing after certification pro-
cedures would add weeks
to the certification cycle.

Simple design Tasks are solved with the sim-
plest possible way to avoid
unnecessary complexity.

× × × Simple design could im-
prove the testing cycle and
reduce low level require-
ments.

Continuous
integration

New code is integrated as
soon as it is ready.

× × × Recommended, as this
finds bugs early.

Coding
standards

Coding rules that everybody
follows.

× × × This is necessary for DO-
178B certification.

40-hour-week Avoiding working overtime. × × × This is mainly useful in
conjunction with pair pro-
gramming.

Architecture and Design in eXtreme
Programming; Introducing “Developer Stories”

Rolf Njor Jensen, Thomas Møller, Peter Sönder, and Gitte Tjørnehøj

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, 9220 Aalborg Ø, Denmark

{rolf, molz, sunlock, gtj}@cs.aau.dk

Abstract. This article introduces a new practice to eXtreme Program-
ming (XP): Developer stories. The goal of these stories and their creation
process is to incorporate architectural planning to XP thus ensuring a vi-
able architecture. By conducting a small development project using XP,
we find that establishing a viable architecture might be problematic. Ar-
guing that architectural quality criteria in XP are traceable to traditional
criteria, and by pointing to related work regarding incremental continous
design, requirements management and large-scale refactorings, we find
support for this claim. We proceed by describing the new practice ensur-
ing that it embraces the values, and supports existing practices of XP.

1 Introduction

Since the late 90’s there has been a huge interest in the field of lightweighted
methods. These methods are best known as agile methods, where XP has at-
tracted the most attention. XP emphasizes on close collaboration between the
developer team and the customer through face-to-face communication, frequent
delivery, self-organizing teams, and rapid response to changes in require-
ments[1].

As a contrast to agile development, non-agile software methods produce sub-
stantial documentation during the development, and the architecture is laid out
in the beginning of the process – based upon a fixed set of requirements deter-
mined as one of the first activities. XP produces no other documentation than
the code itself, and due to core practices such as weekly cycles, incremental de-
sign, test-first programming, and continuous integration, XP is able to respond
without significant overhead to changes in requirements focusing on what to
produce, but not on how to do so.

XP is creating design and architecture by constantly redesigning through
refactoring [1]. This way the architecture will keep on improving throughout
the development phase, but only on demand. XP prescribes using the YAGNI
principle (“You Aren’t Going to Need It”) as mentioned in [2], ensuring that fu-
tile development due to wrong predictions of requirements does not happen[1].

Several publications have expressed doubts regarding the quality of the archi-
tecture produced by XP compared to other methods - e.g. architecture-centric
Rational Unified Process (RUP) [3].

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 133–142, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

134 R.N. Jensen et al.

The approach to design in XP is radically different than in previous methods
– which naturally has spurred several publications on the subject of continous,
incremental design. The role of design in XP has been elaborated and compared
to traditional ways of design amongst others, by Fowler [2]. Shore focuses on
continuous design in [4], listing design goals and rules of thumb.

However, an experiment using XP showed us that the produced architecture
in XP is not necessarily a viable architecture. Furthermore, Fowler suggests
that the approach to design in XP might be too restrictive hinting that there
might be room for design specific considerations [2]. By investigating similarities
between criteria for architectural quality from traditional development methods
versus criteria from XP we see that some properties of “good” architecture are
inherent in the architecture – being the same no matter which development
method is used, and that the criteria to evaluate design in XP is indeed traceable
to traditional criteia.

To improve the likelihood of producing a viable architecture using XP, we seek
to modify XP – and introduce a practice that systematically draws the focus
of the developers onto the developed architecture. The process of the practice
springs from traditional development methods, but is in every way designed to be
not only non-conflicting, but also supporting the values, principles and practices
of XP.

The suggested practice is a new kind of stories – developer stories. Unlike the
stories described by Beck in [1] which are written by users (from now on referred
to as user stories), developer stories are written by the developers. The developer
stories express changes (refactoring) to the existing code, aiming to improve the
existing architecture. The process of writing developer stories occurs before the
meeting initiating the weekly cycle.

Does the new practice then violate the XP spirit? By evaluating the developer
stories in XP, we determine that this new practice does not conflict fundamen-
tally with XP – it even embraces all of the values, and takes its own place in the
synergetic mesh of the XP practices.

2 Experiment

Initially we set out doing a small-scale software development project using XP,
to discover potentially problematic processes. The project aimed to develop a
search engine able to search across several SOAP sources. Performing the exper-
iment was five developers following XP. The project scope allowed for two XP
iterations.

2.1 Result of Experiment

When evaluating the experiment, there was one underlying theme in the defi-
ciencies we experienced. After careful review of the architecture and design of the
application, it was clear that the the architecture was sub-optimal. Even though
there had been several occurrences of refactoring, some of the highest-level mod-
ules had high coupling, making possible future refactoring unnecessarily hard to

Architecture and Design in eXtreme Programming 135

achieve. Moreover, none of the upcoming user stories (that had not been chosen
for the performed iterations) seemed to trigger refactorings of the architecture.

Reflecting on our experiment, we pose the question: Does XP have a weak
side concerning establishing a viable architecture?

While the experiment presented a faulty architecture, and while further anal-
ysis pointed towards i.a. lacking communication regarding architectural matters
as one reason, we still conduct a litterature review to assert independently from
our experiment that XP does have a weak side concerning establishing a viable
architecture.

Before reviewing related work we present a discussion of the term architecture,
assessing that a “good” architecture indeed possess some inherent properties that
are regardless of the development method.

3 Architecture and Design

What is architecture? What is design? Before we proceed investigating related
work, it is necessary to understand what software architecture is. One way to
describe software architecture is as a view of the software on a scale with one
extreme being the concrete implementation, and the other extreme being the
architecture. Moving from implementation to architecture along the scale (with
design somewhere in between), the level of abstraction is heightened, hiding
trivial details, and enlightening basic structures. Another view of architecture
promoted by Fowler in [5] is:

In most successful software projects, the expert developers working on
that project have a shared understanding of the system design. This
shared understanding is called architecture.

Viewing the architecture as a shared understanding causes the practices support-
ing inter-team communication about software design to become more important
and embracing the underlying value communication even more so.

Beck does not rigorously differentiate between the concepts design and archi-
tecture. Where he mentions design [1], we often interpret it as architecture.

But what is a viable architecture? XP [1] uses the term Simplicity as the main
guiding principle for design (architecture), with the following criteria Appropriate
for the intended audience, Communicative, Factored and Minimal that can be
used to evaluate the design.

Properties of architecture have been subject to much work. One property
stems from the work of Alexander (originally on physical architecture, but since
then widely adopted in software engineering) stating that a good architecture is
characterized by the absence of essential weak points [6]. Other properties used
in object-oriented development methods like RUP [3] originate in work from the
70’s on software metrics [7]. Although not all of the criteria for a good archi-
tecture is directly evident in XP, some of them are. Easy to understand [3], for
example, maps to Communicative and Appropriate for the intended audience.
Coupling and cohesion are also among the very central principles [8] in object-
oriented architecture, and can be re-found in the properties implied by Factored

136 R.N. Jensen et al.

and Minimal. So even though XP is by no means an architecture-centric de-
velopment method, the criteria given to evaluate design (or architecture) are
traceable to criteria found in other non-agile methods. This seems to indicate
that there are some common properties that an architecture fulfills, if it is viable.
This indicates that it is no less relevant to consider architectural quality in an
XP setting than in any other setting.

4 Related Work

Beck published the first descriptions of XP in the late 90’s (see [9][10]). In these
first descriptions of XP, the Metaphor was the only practice addressing architec-
ture directly. The purpose of the Metaphor was to “. . . guide all development with
a simple shared story of how the whole system works . . . ” and “The metaphor in
XP replaces much of what other people call “architecture”. . . ”.

Many people have, however, found the Metaphor concept hard to grasp [8],
and in the latest book on XP [1], the Metaphor is no longer a practice. Lippert
et al introduces Metaphor Design Spaces [11], giving a methodical approach
to finding a good metaphor, and letting it guide the architecture. West and
Solano argue that it was wrong to abandon the Metaphor as a practice [12], and
advocates a more systematic discussion of how Metaphor informs development.

A common trait in the work done regarding the Metaphor suggests that albeit
many developers seemingly have failed to grasp and therefore benefit from the
Metaphor practice – it still addresses a need to focus on a shared understanding
of important elements of the software – effectively the architecture.

The lack of explicit requirements management in XP has spurred some con-
siderations. It has been argued that several aspects of requirements engineering
are suitable for agile methods, and that where quality is a concern, agile methods
may benefit from some requirements engineering practices [13][14].

Traditionally requirements are used as basis for constructing an architecture
in architectural-centric methods – and we believe that concerns expressed re-
garding the lack of explicit requirements management in XP is partly due to an
uncertainty as to whether XP produces a viable architecture.

One of the core tools of XP is refactoring, and it is a necessity to achieve
continuous design. Since Fowler published “Refactoring” [15], much work has
been done in the field, enhancing and describing new design patterns for different
application domains. Lippert acknowledges the difficulties of performing large-
scale refactorings within agile development, and presents approaches to integrate
large-scale refactorings into the daily work [16].

We believe that the work done regarding the Metaphor practice, lack of ex-
plicit requirements, and troublesome large-scale refactorings point to a common
problem in XP concerning the architecture of the system.

Beck has recently revised his description of XP [1], giving among other issues
new attention to design, pointing to Simplicity as the fundamental principle.
Here Beck also states that the XP design strategy is “Enough Design Up Front”,
and continuous incremental design. Moreover, Beck states that XP should be

Architecture and Design in eXtreme Programming 137

adapted to the environment – adding and modifying new practices which are
needed to support the underlying values and principles. One of the additions to
XP in the new revision, is the role of the Architect, described as such: “Architects
on an XP team look for and execute large-scale refactorings. . . ”. Although the
role of the architect is described, the architect is not given any setting in which to
communicate with the team about the possible need for large-scale refactorings.

Reviewing related work, and considering the revision of XP we believe that
while Beck has acknowledged the need for a focus on architectural quality [1],
there is still a need for a practice supporting the inter-team communication
about architectural quality and planning of both normal and large-scale
refactorings.

5 Developer Stories

We proceed by presenting a new practice to XP, which provides the development
team with an opportunity to consider the architecture of the application. One
of our premises is, however, to let the practice follow the general look and feel
of XP – it is not an attempt to insert a “Big Design Up Front” phase into XP.
We call the practice “Developer Stories”, and the stories are analogous to user
stories - but are written by the XP development team, and describe refactorings,
large or small scale, aiming to improve the architectural quality. Given that
traditional development methods have numerous approaches to working with
the architecture, we lend an ear to these traditional approaches.

5.1 What Are Developer Stories?

Developer stories are, as mentioned, analoguous to user stories. The developer
stories describe (changes to) units of developer-visible properties of the software.
In contrast, user stories describe units of user-visible funtionality of the software.
The physical representation of a developer story is an index card, which may have
another color than user stories, making it easy to distinguish them from each
other.

The purpose of the developer stories is two-fold. On one hand they are a tool
for planning and express concrete demands for refactoring. On the other hand
their creation process make the developers reflect upon the design of the system,
and effectively build a shared understanding of the important elements – the
architecture.

5.2 When to Write Developer Stories?

The developer stories are written before the meeting that starts the weekly
cycle – fig. 1. The authors of a developer story are all the programmers in
unison. The outcome of the creation process is (possibly) a number of developer
stories that are prioritized. The developer stories are added to the set of available
stories, and the customer is able to choose them for implementation during the

138 R.N. Jensen et al.

upcoming iteration together with the user stories. The customer needs to be
informed about the new developer stories, and the development team’s view
of their importance. This means that it becomes clear to the customer which
refactorings are necessary, and since the whole team has written them together,
they are also able to explain to the customer why these refactorings are necessary.
Why does the customer get to choose? Because while the development team is
able to recognize the need for architectural change, it is still the customer that
is capable of determining the business value of the developer story by virtue of
the fact that the customer is knowledgable of the context of the product.

Weekly meeting

Day 1 Day 2

Writing developer
stories

Fig. 1. Writing developer stories every week

Maybe attempting to write the stories reveals that the architecture is just fine.
Either way, the development team has an opportunity to communicate about
the architecture – heightening the overall level of knowledge of the architecture
within the team.

5.3 How to Write?

But how are the developer stories written? Figure 2 shows the four stages of the
writing process. The participants are the whole development team. Even though
we describe them as stages, we envision the process as quite fluent, with rapid
(and to the participants imperceptible) changes between the stages.

Discover and describe: The architect has during previous iterations acknowl-
edged that some problems exist with the current architecture – this is the
input to the process. To contribute, everyone else may express their ideas
and worries about the architecture of the application.

Write developer stories: This is an iterative step. Having acknowledged and
described the problems, the team now has to express the problems as requests
for refactorings and new development – the developer stories. During this
phase, several tools can be used – UML diagrams, CRC cards, collaboration
diagrams, etc. but for the purpose of clarification and communication – not
for documentation.

Estimate developer stories: After writing the developer stories, they have to
be estimated. The estimation process makes the team consider how they can
be implemented – either heightening the level of confidence in the stories –
or spurring a rewrite of one or more stories.

Architecture and Design in eXtreme Programming 139

Discover and describe

Prioritize

Write developer stories

Estimate

Fig. 2. The four stages of the writing process

Prioritize stories: Having completed the estimation of the developer stories,
they can be prioritized, letting the team agree on which problems are in most
need of being addressed. The team also needs to identify whether there are
any stories that are mandatory to choose for implementation in the upcoming
iteration. Maybe the prioritization reveals that the developer stories must
be rewritten or specified. A heuristic that can easily be applied during the
prioritization of the developer stories is the YAGNI principle. If someone can
argue that some particular story quite simply describes superflous, uncalled-
for architectural changes – then You Aren’t Going to Need It.

Hopefully, many developer story sessions will be very short – due to a lack
of problems with the architecture of the application. However, the process of
discussing the architecture and letting the architect interact with the rest of the
team on architectural matters may give the team courage to face problems – and
give the customer an opportunity to act upon them.

6 Discussion

How does developer stories extend XP – in alignment with the XP spirit? Aug-
menting XP with new or altered practices is supported by Beck in [1], provided
that the new or altered practices support the underlying values and principles
of XP. Sharp and Robinson also conclude that the practices of XP may be al-
tered or replaced, as long as the underlying values are supported by the new
practices [17]. The values of XP are the ones that the development team have
to embrace to actually do XP. However, the values are not close enough to the
daily development to provide guidance in everyday problems.

6.1 Embracing the Values

In the following we will go through the values of XP, considering how developer
stories fits.

140 R.N. Jensen et al.

Communication: The developer stories strengthen communication. It is an
enabling practice because it encourages and strengthens inter-team commu-
nication between the team members regarding the design and architecture.
Letting the whole team communicate about views of important elements
of the system supports the pair programming practice, and enhances the
collective understanding of the project. Having everyone collaborating on
writing the stories supports spreading knowledge of design decisions beyond
the affected programming pairs.

Simplicity: Writing the developer stories encourage simplicity. It is the gov-
erning design principle. Whenever the design of the application grows com-
plicated, e.g. with high coupling and/or low cohesion, the developer stories
provide the team with a possibility to do something about it.

Feedback: The feedback values evolves around one of the key features of XP,
Embracing changes. Embracing change leads to the need for feedback: Was
the change right? By having the development team constantly assessing that
the architecture is viable and asking themselves whether it can get better,
the feedback cycle gets even more intense.

Courage: It gives self-confidence and courage to do something about architec-
tural courage. The developer stories also benefits from courage, because it
takes courage to act upon problems with the architecture and give feedback
to the architect. They are willing to write the developer stories, and redesign
the application. Courage is the investment the team must take when writ-
ing – and an investment that is repaid when the quality of the application
improves.

Respect: Equality of the team members and respect for the project is a value
that lies below the surface of the previous values. If the stories are written
by everybody with everybody participating, it does not violate this value –
it might even support it.

6.2 Interacting with Other Practices

Like every other practice, we believe that developer stories work only poorly
by themselves, but used together with the other practices of XP, the collective
effect is much better. Figure 3 shows the interaction of developer stories with
the practices Incremental Design, Pair programming and User Stories.

Incremental Design: As our experiment hinted, and as related work sup-
ported, incremental design may falter [2], in which case the developer stories
support by letting the team take a collective overview of the architecture,
considering possible major changes. Developer stories on the other hand get
support from incremental design since the whole development team has wit-
nessed the design grow little by little – everyone has had their influence
on the design, and is therefore able to contribute in the collective writing
process. Using incremental design, small refactorings become an integrated
process, but it is harder to achieve large-scale refactorings. Developer sto-
ries alleviate this difficulty, providing a visualization and planning of the
large-scale refactoring process.

Architecture and Design in eXtreme Programming 141

Planning knowledge

ComplementSupport

Pair programming

Developer stories

Incremental design

User stories

Common

Fig. 3. Developer stories depend heavily on interaction with other practices

User stories: While user stories express units of user-visible functionality, de-
veloper stories express developer-visible properties of the software. The dif-
ference between these requirements may well be compared to the difference
between functional and non-functional requirements. This way, developer
and user stories complement one another.

Pair programming: Without pair programming, knowledge would not spread
as thouroughly throughout the development team, and the necessary shared
responsibility enabling the writing process of the developer stories would be
impossible. By writing developer stories on the other hand, knowledge that
might not disseminate (or only disseminate slowly) through pair program-
ming, rapidly reaches each developer.

If a team adopting developer stories does so in the spirit of XP, we believe that
it can fit into the practices of XP, making XP even better. As Beck writes in [1],
different application domains present different challenges. In application domains
where a viable architecture is essential for the application being developed, the
developer stories might prove their usefulness.

7 Conclusion

Using XP in an experiment developing software, we found that it did not lead to
a viable architecture. Inspired by the experience we searched and found support
in the literature that XP does indeed have a weak point concerning establishing a
viable architecture. However XP supports adding new practices and we introduce
a new practice: Developer stories – aiming to strengthen the architectural focus
by enabling inter-team communication. After a careful review we believe that the
new practice can work in the spirit of XP, and coexist in synergy with existing
practices.

7.1 Future Work

The prescribed “how” and “when” are only speculations. Therefore whether
developer stories should be a core practice or a corollary practice is up to future
testing. By having too much focus on the developer stories one might see that

142 R.N. Jensen et al.

changes to the architecture will be done too often and take too much time. On
the other hand, using developer stories as a corollary practice might mean that,
when eventually writing them, the produced architecture will be the cause of
major refactoring throughout the entire system – which might have been avoided
if the developer stories where given more attention.

As always, reality beats theory, so testing developer stories in the wild is
bound to be a learning experience.

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. 2 edn. Addison-
Wesley (2004)

2. Fowler, M.: Is design dead. (2004)martinfowler.com/articles/designDead.html
(2004)(2004)

3. Larman, C.: Applying UML and Patterns. 3. edn. Prentice Hall (2004)
4. Shore, J.: Continuous design. Software, IEEE 21(1) (2004) 20–22
5. Fowler, M.: Who needs an architect? IEEE Software 20(5) (2003) 11–13
6. Alexander, C.: Notes On The Synthesis Of Form. President and Fellows of Harvard

College (1994)
7. Gilb, T.: Software Metrics. Winthrop Publishers Inc. (USA edition) (1988)
8. Fowler, M.: Design: Reducing coupling. IEEE Software 18(4) (2001) 102–104
9. Beck, K.: Embracing change with extreme programming. Computer 32(10) (1999)

70–77
10. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley

(2000)
11. Lippert, M., Axel, Schmolitzky, Züllighoven, H.: Metaphor design spaces. Volume

2675 of Lecture Notes In Computer Science., Springer-Verlag (2003) 33–40
12. West, D.D., Solano, M.: Metaphors be with you! In: Agile2005. (2005)
13. Eberlein, A., do Prato Leite, J.C.S.: Agile requirements defini-

tion: A view from requirements engineering. In: TCRE’02. (2002)
http://www.enel.ucalgary.ca/tcre02/.

14. Paetsch, F., Eberlein, A., Maurer, F.: Requirements engineering and agile soft-
ware development. In: Twelfth International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises. (2003) 308

15. Fowler, M.: Refactoring. Addison-Wesley (1999)
16. Lippert, M.: Towards a proper integration of large refactorings in agile software

development. In: Lecture Notes in Computer Science. Volume 3092., Springer-
Verlag (2004) 113 – 122

17. Robinson, H., Sharp, H.: Xp culture: Why the twelve practises both are and are
not the most significant thing. Proccedings of the Agile Development Conference
(2003)

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 143 – 153, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards a Framework for Integrating Agile
Development and User-Centred Design

Stephanie Chamberlain1, Helen Sharp2, and Neil Maiden3

1 Bit10 Ltd, Sovereign Court, Sir William Lyons Road, Coventry CV4 7EZ, UK
stephanie.chamberlain@gmail.com

2 Centre for Research in Computing The Open University, Walton Hall, Milton Keynes,
MK7 6AA, UK

h.c.sharp@open.ac.uk
3 Centre for HCI Design City University, Northampton Square London

EC1V 0HB, UK
n.a.m.maiden@city.ac.uk

Abstract. Due to a number of similarities between user-centred design (UCD)
and agile development, coupled with an appreciation that developers are rarely
usability experts, it seems attractive to integrate these two approaches. How-
ever, although agile methods share some of the same aims as UCD, there are
also distinct differences. These differences have made the use of these methods
on development projects problematic. This paper reports a field study designed
to investigate the use of agile methods alongside UCD in one particular
organization. The aim of the study was to develop a framework for use by
project teams wishing to integrate UCD practices with agile development. The
study, its findings and five principles for integrating UCD and agile
development arising from this work are discussed.

1 Introduction

The importance of knowing who the users are, understanding their priorities and
goals, and actively involving them in uncovering requirements (e.g. [10]) is well
understood in software engineering. However the role they should play, how they
should be involved, and how much they should be involved has been a matter of
dispute (e.g. [6, 9]). User involvement is also a central concern of HCI, and the
importance of integrating software engineering and HCI methods has been recognised
for many years (IFIP WG 2.7/13.4). The Agile Manifesto emphasises the importance
of involving the customer in a development project, but this practice is proving to be
problematic (e.g. [12]), and it is rare for a real end-user to take the role of customer.

“User Centred Design” (UCD) is an approach which aims to involve the users in a
meaningful and appropriate way throughout a system’s development (e.g. [5], [15]).
Gould et al [5] first proposed three principles of UCD in the mid-1980s, and in the 20
years since then, various techniques for involving users successfully have been
developed. Integrating UCD and agile development therefore has the potential to help
agile developers with the difficult practice of involving customers, and the wider
concern of how to integrate HCI concerns with software engineering.

144 S. Chamberlain, H. Sharp, and N. Maiden

The purpose of the study described in this paper was to identify and investigate the
issues faced by a project team trying to integrate UCD and agile development. The
study reported was conducted within one organisation where Scrum, XP and UCD
were being used. We report the study and its findings, and extract five principles
which appear to be significant for successfully integrating UCD and agile methods. In
the rest of this section, we explore UCD, other approaches to integrating agile
methods with UCD principles, and compare UCD and agile approaches. In the next
section we describe the method, and in section 3 we present our results. Section 5
presents the five principles, and the paper concludes with some practical suggestions.

1.1 User-Centred Design (UCD)

The term UCD refers to both a collection of techniques and the philosophy at the
heart of these techniques. The overall philosophy of UCD is to place the user at
the centre of the design process through the use of rigorous methods. For instance, the
designer tries to “get to know” the users initially through techniques such as
interviews, direct observation in context, forums and questionnaires, before moving
on to design prototypes for the users to test within a real-life context. Often the first
“prototype” is simply a paper one which the designer constructs through an analysis
of the tasks that the user will perform. As development progresses and more
sophisticated prototypes are developed, the user may be asked to perform tasks using
the prototype with only minimum guidance from the tester. The results are then fed
into an iterative process which continues until a final version of the system emerges.

1.2 Integrating UCD and Agile Development

The potential of XP to provide a bridge between software engineering and HCI is not
a new idea. A discussion between Kent Beck and Alan Cooper [13] concluded that
there were indeed strengths of Interaction Design and XP that could be combined.
Beck and Andres [3] acknowledge this by including an interaction designer in the
agile development team; personas are now commonly used in agile projects (e.g. [1]).

Several other approaches to integrating HCI and agile concerns have been
suggested. For example, Kane [8] proposed how ‘discount usability’ [14] may be
integrated with agile development. Ambler [1] suggests several models which can be
used to facilitate interaction between users and developers and shows how these can
be used in an agile project. Holtzblatt et al [7] have proposed a modified version of
contextual design (rapid contextual design) which is appropriate for projects with a
shorter timescale, including agile development [4].

1.3 Similarities and Differences Between UCD and Agile Development

A project involving both Agile Methods and UCD becomes a challenge because
although there are several similarities, there are also distinct differences (e.g. [17]).
The three main similarities are:

1. They rely on an iterative development process, building on empirical information
from previous cycles or rounds. For instance, one of XP’s values is feedback
([2:20]), and the idea of refactoring code is an embodiment of this value. In UCD
one of its founding principles is iterative design.

 Towards a Framework for Integrating Agile Development and UCD 145

2. Agile techniques place an emphasis on the user, encouraging participation
throughout the development process. For instance, in Scrum, user evaluation of
the product is encouraged on a monthly basis as users are ideally present during
the sprint review ([16:54]) and the “Product Owner” is responsible for the require-
ments and feature prioritisation for the product. A second founding principle of
UCD, is early and continual focus on users.

3. Both approaches emphasise the importance of team coherence. Beck states that
one of the purposes of the planning game is to “bring the team together” ([2:85]).
One of the features of the UCD approach is that the whole team should have the
user in mind while developing the product.

The two main differences are:

1. UCD advocates maintain that certain design products are required to support
communication with developers, while agile methods seek minimal documentation.

2. UCD encourages the team to understand their users as much as possible before the
product build begins, whereas agile methods are largely against an up-front period
of investigation at the expense of writing code.

2 Fieldwork

2.1 Method

Three project teams in one organisation were observed for around 2-4 hours per week
on site by one individual for a period of 6 months. The organisation hosting these
projects was a large media company with a tradition of employing a user-centred
approach to development. The organisation had a clear distinction between
‘designers’, who were responsible for user-centred activities, and ‘developers’ who
produced the code. The observer was a member of staff at the organisation, but not a
member of any of the project teams that formed the basis of the study.

The study period was divided into two parts. During the first part, which lasted
about a month, the researcher identified some themes which appeared to be significant
to the projects being observed. These themes were then used as a framework for a
more in-depth investigation which took up the remainder of the observation period.

The initial approach to observation was ethnographic in nature in that the
researcher approached the activity as ‘strange’ and had no a priori hypotheses to test.
The initial themes emerged over the first period of study. The observation strategy
combined shadowing of individuals with site or situation observations such as
meetings (14 observation sessions in all). Ten interviews were carried out in order to
gain further insight into the observations and therefore not all of the team members
were interviewed, although care was taken to gain as much of a cross-section as
possible across all teams. Most regular meetings for all three teams were attended and
some unannounced visits were made in order to gain a deeper insight into the day to
day workings of the teams. At the start of each meeting or observation the method
was briefly explained. The team knew they could cease the observation at any point
and that the observer would leave without need of an explanation.

Contemporaneous notes, photographs and some video recordings were used to record
the interviews and observations. After each session, a summary of key points was
written. The environment, interactions and process were recorded by the observer.

146 S. Chamberlain, H. Sharp, and N. Maiden

Documents helped to provide evidence that the processes which had not been observed
but were reported through interviews, e.g. maintaining a sprint backlog graph, were
actually being carried out and documented.

2.2 The Project Teams

Three projects formed the main focus of the field study work. Here we refer to them
as Project I, Project S and Project M. Each team contained developers (coders) and
designers (those who traditionally worked on the user research and usability). Table 1
summarises the projects and their approach to integrating agile and UCD.

Table 1. A summary of the three projects observed through our study

Features Project I Project S Project M
Project Application Website to involve

people in local civic
life, including online
community to
promote and re-
engage a political
audience.

Interactive TV
application: a two-
video stream
interactive quiz
designed to
complement a TV
programme.

Web-based
message board
facility for the
study organisation.

Methodology
followed

UCD and Scrum UCD and XP UCD and Scrum

Main User Group Members of the
public

Members of the
public

Members of the
public

Other Users1 Content editors for
the website

Administrators/
Editors

Administrators/
moderators2

The “product
owner”3

Distribution of the
project team

All on the same floor Spread over two
floors

Seated together

All three teams had experience of using agile methods with UCD in the past, and
had developed their own approaches to integration, which were observed in this
study. These are described below.

The designers of Project I had reported problems on previous agile projects where
they had used Scrum. They believed that these stemmed from the inclusion of the
design team in the Scrum from the outset of the project. They also felt that they
needed an “upfront” period of user research. On previous projects, few usability
recommendations had been implemented and the team felt they had been lead by
technical requirements over and above user and business requirements. Consequently,
Project I decided to change their approach so that the designers did not enter the
Scrum until there was clear value in doing so. The team envisaged:

1 Observations showed that users within the organisation were often seen to be user representa-
tives on all three projects.

2 The employees within the organisation that supported the message-boards by ensuring no
illegal or inflammatory content appeared.

3 This person’s job was to ensure the requirements for both the moderators and the end-users
were fulfilled.

 Towards a Framework for Integrating Agile Development and UCD 147

• A separate “up front” period of user requirements gathering and research which
took place before development began.

• A prototyping stream where the developers and designers worked together.
• A three-man design team where one designer fed the Scrum with prototypes while

the other two designers carried out user research.
• The use of iterative usability testing with constant feedback throughout the

development phase.

In Project M, the designers had found attending the Scrum with developers on past
projects to be unhelpful and so they ran their own UCD process in parallel to the
developers’ use of Scrum.

Project S were part of the Interactive Television Department where they were
required to deliver within very tight timescales due to fixed transmission dates. They
had found that XP worked best for them and the team were using this approach when
the observations took place. During the study the team admitted that some UCD tools
and methods are occasionally overlooked as a result of external time pressures.

The three projects therefore had different approaches to using UCD with an agile
approach. Project I attempted to integrate UCD and Scrum, Project M used UCD and
Scrum in combination and tried to align the processes, and in Project S the designers
used UCD and activity progressed quite separately from XP development.

3 Results

Four themes emerged from the initial observation period: user involvement,
collaboration and culture, prototyping and the project lifecycle. These appeared to be
significant issues faced by the project teams in working within UCD and agile
development. The meaning of these themes, and the results of further investigations
focused around these themes are presented below.

3.1 User Involvement

Through our observations, user involvement was characterised as being where:

the users were invited to give opinions or test prototypes
the users were interviewed, observed or questioned for research purposes
the user’s interaction with the product was considered in detail

Each team used different tactics for ensuring that they had suitable user involvement.
Project I developed personas based on earlier user research, and then developed a user
journey, i.e. usage scenario, for each persona. They also analysed usage patterns taken
from the existing version of the website. This gave them an idea as to how far the
users were getting through certain processes such as setting up a campaign. Usability
issues were raised in meetings by editorial staff.

In Project M we only saw one user testing the system during the observation
period. As Project M involved the development of an internal system for managing
web message boards, the user in this case was an editor within the organisation.
Interestingly a member of the team said that the testing was being carried out “for the
developer”. The Editor was testing a part of the system to ensure it fulfilled her

148 S. Chamberlain, H. Sharp, and N. Maiden

team’s requirements before it was released. The Product Owner was observed
attending the sprint review and following this, there was a demo of the work carried
out in the sprint. This was mainly for the benefit of the Product Owner who asked
questions and the developers proudly showed off the work they had done. This was
done at the desk and in an informal way rather than through a formal presentation. It
was one of the Product Owner’s responsibilities to prioritise features within the sprint.

An example “Sprint Backlog” on a whiteboard
is shown in Fig 1 from Project M.

Project S showed the least evidence of user
involvement. However, the user’s interaction with
the product was seen to be important and the
user’s needs were often represented by user
representatives taken from the team. For instance,
the broadcast assistant was observed playing the
role of the customer in order to carry out what
appeared to be user acceptance testing before the
product went to the dedicated QA team. The
functional specification was said to be made up of
a variety of “user experiences”. Stories were
written out on cards against the functional
specification as the development producer
explained what happened at each stage in user
terms. The specification was written from the
user’s perspective.

3.2 Collaboration and Culture

Collaboration was observed with relation to:

• The collaboration between individuals within the team
• Specifically, the collaboration between designers and developers
• The culture that the chosen methodology created

Project I held cross-functional meetings which included representatives from the
development, design and editorial teams. The team worked collaboratively in the
meetings and requirements were captured from all team members. There had been
problems with collaboration between developers and designers in the past; in this
project, the Design Lead commented that “we need to get everyone involved in the
user journeys as this was the problem before”. There was evidence of a struggle for
power between the two groups, as shown by this exchange recorded in our notes:

The Scrum Master claims that a developer has already done the back-end work.
The Design Lead asks incredulously “based on what spec?” One of the developers
replies that it was based on the spec provided by the technical lead. It was agreed
that a general meeting was required amongst the leads of the project over this
particular issue.

Each group seems to be guarding themselves against having to deal with decisions
being made by one group at the expense of another. However, later this defensiveness

Fig. 1. Sprint Backlog

 Towards a Framework for Integrating Agile Development and UCD 149

is displayed again by the Scrum Master who objects to the Product Owner asking
probing questions about estimating during a Sprint Review.

The Product Owner refers to the graph and says that the shape of the graph seems
to indicate that generally there is an under-estimate of how much work there is to be
done. The rather defensive retort from the Scrum Master is that the estimates are
not inaccurate but that the requirements change. He adds that if there hadn’t been
so many small tasks to complete on top of the list of tasks for the sprint, then the
team would have delivered all of the tasks by the end of the Sprint. The Product
Owner states that there is always new work that crops up therefore it might make
sense to say that a certain % of time is allocated for these changes. The development
producer adds that there are two options: Either we need to accept that this
happens and plan for it or stop it happening if it stops people working effectively.
The Scrum Master again defensively says that they already are working effectively.

On Project M there were similar issues between the designers and developers.
However, in this project the design team split away from Scrum altogether - this was
only used by the developers. The developers sometimes pair-programmed in order to
solve hard problems but this was ad hoc, not regular. Many of the problems
encountered with collaboration were not to do with the use of Scrum or UCD on this
project but largely due to other factors such as lack of people resources.

On Project S communication between the designer and developers was mostly
informal. Meetings involving the designer and developers together were scarce. Team
meetings often did not involve the designer because they were arranged at the same
time as other meetings she had to go to. As a result, there was a disconnection
observed between the designer and the developers.

3.3 Prototyping

Each of the projects used prototyping; Project M used an evolutionary approach,
Project S used a throw-away approach, and Project I used a combination of both
evolutionary and throw-away prototyping.

Project I faced timescale pressures which left little time to handle prototyping
effectively. For example, the client-side developer noted that there was not much time
for reviewing things as “priorities on the project have been set elsewhere”. The cycle
of prototyping and feedback didn’t work in the way that had been envisaged.

Project M also faced time problems with prototyping, but caused by the different
timescales associated with paper prototyping versus development prototyping. This
meant that the designers had a shorter iteration cycle than the developers. Ultimately
this may have contributed to the abandonment of Scrum by Project M designers.

The Usability Engineer observed that “design prototyping is faster than
development prototyping as the <development> languages we use are too slow to
prototype in. You ask for a prototype and 6 weeks later you get it.” The designers
worked at a different pace to the developers which made it hard to iterate around
versions of software or designs.

On Project S, the broadcast assistant and a developer used a paper prototype to test
that the application supported users’ tasks as expected. This prototype was a series of
storyboards and flows.

150 S. Chamberlain, H. Sharp, and N. Maiden

3.4 Project Lifecycle

The different projects exhibited different ways of combining the traditional lifecycle
phases with the agile approach. For instance, Project M dedicated a whole sprint to
requirements gathering at the start of the project. Some development was planned
during this time but the phase was named a “business analysis phase” to indicate that
the emphasis was on requirements gathering.

On Project I, the designers advocated “up-front design methods” where
significant user research is carried out before any coding is done. The designer’s
tasks at the start of the project were to: analyse usage patterns, create user journeys
(including personas), map the user’s mental model and create a high level
specification. Based on this information they then prioritised the task list and sent
it to the rest of the team.

This activity itself wasn’t observed in our study although the resulting artefacts and
their use were in evidence (see Figure 2). The lead interaction designer was keen to
get the whole team involved in the user journeys as not doing this had
caused problems on previous projects. Each area such as technical, editorial and design
had a “Discipline Lead” who looked after the interests of that particular group within the

project. Requirements
gathering was carried
out by all of the dis-
cipline leads together.

In Project S, an
application functional
specification was pro-
duced before the
“planing game” and
this provided the basis
of discussion. User
journeys had also
been produced at this
stage. Project S were
unhappy making de-
cisions on the cus-
tomer’s behalf.

For instance, during
an observed multi-dis-
ciplinary team meet-

ing, a developer suggests that they should plan a story around the ‘red button’ (which
navigates to interactive TV from linear TV channels) but others are unwilling to do so
until requirements had been gained from the customer.

In Project M, a whole sprint was given over to requirements gathering. Some
development was planned during this time but the phase was named a
“business analysis phase” to indicate that the emphasis was on requirements
gathering.

Fig. 2. Results Board (from user research in Project I) showing
user opinions

 Towards a Framework for Integrating Agile Development and UCD 151

4 Discussion

All projects had some degree of design before coding started but the one most loyal to
XP (Project S) had the shortest design period. It also had the least user interaction.
However, it must be noted that this project had a much shorter timescale than the
others observed.

Project I seemed to have least problems with collaboration which may have been
related to the fact that UCD and agile principles were well integrated.

Project M suffered from a detachment of the development and design methodology
which as a result tended to operate separately. There was a culture of defensiveness
which may have grown up out of this segregation of the two disciplines.

In reviewing the three projects it seems that a fundamental problem of communi-
cation exists between the developers and designers within each team and the subject
of power within the project is a tricky one. Designers within a project defend their
discipline in response to decisions made by the developers, and vice versa.

The power aspects of UCD and Agile are interesting as part of the reason these
methodologies came about was because each discipline needed a defence mechanism
against other disciplines such as management, or the business taking away their
power. Consequently, some kind of balance needs to be put in place to ensure that this
power struggle is controlled on a project.

Prototyping also appears to be problematic due to the timescales involved in
developing an application in comparison to the design of a paper prototype. However,
this may be ameliorated if the designers were managed differently so that other
projects were interspersed for the designers and there didn’t seem to be so much lag
between feedback and implementation.

5 Five Principles for Integrating UCD and Agile Development

Based on our observations and the themes discovered, we have evolved a set of five
principles which are significant where UCD and agile methods are to be integrated:

1. User Involvement – the user should be involved in the development process but
also supported by a number of other roles within the team, such as having a proxy
user on the team.

2. Collaboration and Culture – the designers and developers must be willing to
communicate and work together extremely closely, on a day to day basis. Likewise
the customer should also be an active member of the team not just a passive
bystander.

3. Prototyping – the designers must be willing to “feed the developers” with
prototypes and user feedback on a cycle that works for everyone involved.

4. Project Lifecycle – UCD practitioners must be given ample time in order to
discover the basic needs of their users before any code gets released into the shared
coding environment.

5. Project Management – Finally, the agile/UCD integration must exist within a
cohesive project management framework that facilitates without being overly
bureaucratic or prescriptive.

152 S. Chamberlain, H. Sharp, and N. Maiden

Although these principles have arisen through the observation of one particular
organisation attempting to integrate agile methods with UCD, they can go some way
to offer other teams a framework with which to begin. More research is required in
this area through the observation of further organisations and project teams.

6 Conclusion

User-centred-design and agile methods are compatible, and they can work together
but they can also provide problems if the key principles aren’t addressed. For
instance, the two methodologies can be at odds due to:

Power struggles between developers and designers
Time differences between designers’ and developers’ capacity to create tangible
outcomes from each iteration round. Development usually takes more time
Communication issues if members of the team don’t take part in some
elements/phase of the project
A reluctance to understand the needs of each element of the project
The extent to which the user is able/willing to contribute to the project

However, these can be overcome if:

There is some balancing role or mechanism put in place to ensure that each
discipline has equal power on the team
Resource management and project management ensures the management of time
and resources equate to utilised resources that don’t become frustrated whilst
waiting for results
All members of the project team are available/involved at each key point of the
project
The user plays a part in the project so that their requirements are catered for and
that the end-product works in a realistic situation

If agile methods and UCD are successfully integrated within a project team, the
evidence from our observations suggest that it will be more likely to deliver benefits
to the business and most importantly to the user as well.

References

1. Ambler, S. (2002) Agile Modeling, John Wiley and Sons
2. Beck. K. (2000) Extreme Programming Explained United States and Canada, Addison

Wesley.
3. Beck, K. and Andres C. (2005) eXtreme Programming Explained: embrace change (2nd

edition), Addison-Wesley
4. Beyer, H. Holtzblatt, K. & Baker, L. (2004) An Agile Customer-Centered Method: Rapid

Contextual Design, in Proceedings of XP/AU 2004, eds C. Zannier et al, LNCS 3134
Springer-Verlag.

5. Gould, JD and Lewis, CH (1985) Designing for Usability: key principles and what
designers think, Communications of the ACM, 28(3), 300-311.

 Towards a Framework for Integrating Agile Development and UCD 153

6. Heinbokel, T., Sonnentag, S., Frese, M., Stolte, W. & Brodbeck, F. C. (1996) Don't
underestimate the problems of user centredness in software development projects - there
are many!, Behaviour & Information Technology, 15(4), 226-236.

7. Hotlzblatt, K., Wendell, J.B. and Wood, S (2005) Rapid Contextual Design: A How-to
Guide to Key Techniques for User-Centered Design, Morgan Kauffman.

8. Kane, D. (2003) Finding a place for discount usability engineering in agile development,
ADC 2003, pp40-46.

9. Keil, M. & Carmel, E. (1995) Customer-Developer Links in Software Development,
Communications of the ACM, 38, (5), 33-44.

10. Kotonya, G. & Sommerville, I. (1998) Requirements Engineering: processes and
techniques, John Wiley & Sons.

11. Kujala, S. (2003) User involvement: a review of the benefits and challenges, Behaviour &
Information Technology, 22(1) 1-16.

12. Martin, A., Biddle, R., and Noble, J. (2004) The XP Customer Role in Practice: Three
Studies, in Proceedings of ADC 2004, Salt Lake City, June.

13. Nelson. E. (2002) [Internet] Extreme Programming vs. Interaction Design http://
www.fawcette.com/interviews/becknelson_cooper/ [Accessed September 2004]

14. Nielsen, J. (1993) Usability Engineering, Morgan Kaufman.
15. Preece. J., H.Sharp and Y.Rogers (2002) Interaction Design: Beyond Human Computer

Interaction New Jersey, John Wiley & Sons. Inc.
16. Schwaber. K. and M.Beedle (2002) Agile Software development with Scrum New Jersey,

Prentice Hall.
17. Sharp, H.C., Robinson, H.M. and Segal, J.A. (2004) "eXtreme Programming and User-

Centred Design: friend or foe?" in HCI2004 Design for Life, Vol 2.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 154 – 163, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Security Planning and Refactoring in Extreme
Programming

Emine G. Aydal1, Richard F. Paige1, Howard Chivers2, and Phillip J. Brooke3

1 Department of Computer Science, University of York, UK
{aydal, paige}@cs.york.ac.uk

2 Department of Information Systems, Cranfield University, UK
hrchivers@iee.org

3 School of Computing, University of Teesside, UK
p.j.brooke@tees.ac.uk

Abstract. Security is a critical part of systems development, particularly for
web-based systems. There is little known about how to effectively integrate
security into incremental development processes such as Extreme Programm-
ing. This paper presents the results of a project that used Extreme Programming
practices and deferred consideration of security until system functionality was
complete. The findings suggest that refactorings within incremental develop-
ment processes are capable of delivering high quality security solutions, and
provide insights into how security requirements can be incorporated in the
planning game.

1 Introduction

Security is an important part of system development. For web-based applications,
such as those that use Web Services, or for distributed systems with dynamic recon-
figuration capabilities, such as Grids, security requirements will be of substantial
importance to customers. Established processes and practices for delivering security
requirements are typically evidence-based, and demonstrate process compliance,
usually by a process of inspection (e.g. the Common Criteria (CC) [11]). The tension
between established security practices and the incremental and iterative delivery
offered by agile processes is now well understood.

Satisfying security requirements with agile processes is challenging; Fowler
suggests that security may be hard to refactor [3]. Moreover, evidence suggests that
security is difficult to retrofit to a system, because of the system-wide nature of
security properties [2,7,13]. Despite this, there is room for optimism, for example, the
notion of ‘good enough’ security [5], and the idea that an incremental security
architecture [2] can be used to identify the need for security refactoring.

This paper reports on a practical project, which applied Extreme Programming (XP)
practices for building a web-based system. The novelty with this project was that
consideration of security requirements were deferred until functionality was complete.
That is, additional XP iterations were applied to satisfy security requirements, given a
fully functional system. In these iterations, the system architecture was refactored to

 Security Planning and Refactoring in Extreme Programming 155

include security features, following standard XP practices used in a novel way. Though
this may appear to be a contrived process, late security requirements are representative
of many large projects, and agile processes are intended to be able to deal with changing
requirements. Developing the system in this way explored the effectiveness of security
refactoring, and provided the opportunity to consider how different types of security
requirement can be incorporated in the planning game.

The finding of this project is that it is feasible to deal with security requirements
during XP, by making using of refactoring. It is also possible - and effective - to
incorporate security vulnerability assessments and risk analysis during the Planning
Game. Moreover, refactoring is essential to security quality, particularly for simplifying
the relationships between security mechanisms and the system goals they support.

We commence with a brief overview of related work, and then summarize the
project, its iterations, and the refactorings. We conclude with a summary of the
project and its contributions, and make several key observations pertaining to our
understanding of agile security development.

2 Background and Related Work

The purpose of security is to mitigate the risk of threats, which result from potential
attacks that may exploit features or vulnerabilities in a system, resulting in specific
unwanted outcomes to stakeholders’ assets. Security requirements can in part be
determined by identifying potential attacks and attackers, as well as the threats that
may arise while the system is in use. The system must also be secured from security
vulnerabilities, i.e., “security holes that makes a system more prone to be attacked by
a threat or make an attack more likely to have some success or impact” [8].

Common security requirements include:

• Authentication: that data actually originates from the claimed person or system.
• Authorization: actions, operations or data that are permitted to authenticated

users.
• Integrity: that data are managed to ensure that only appropriate modifications

are possible (e.g. prevent modification in transit, or maintain consistency with an
external process).

• Confidentiality: that data are not shared with unauthorized entities.
• Nonrepudiation: that a sender/receiver is not able to later claim that they did not

send or receive the message.

The international standard for security development is the Common Criteria [11],
derived from the US TCSEC and the European ITSEC; it is an evaluation standard,
and facilitates an inspection process. It corresponds to quality assurance practices in
which documented evidence demonstrates process compliance.

The CC addresses assurance, but does not help in selecting appropriate security
features. The normal way to do this is by risk analysis, which considers systematic
features such as business security goals and the attack environment. Generally, two
aspects of the system are considered: its design and normal use by users and
organizations; and the possibility of technical defects or vulnerabilities that may
facilitate unexpected paths of attack. The first requires a structural argument that

156 E.G. Aydal et al.

security features contribute to system-level goals, whereas the second motivates
security features that mitigate known defects. Both these types of requirement are a
challenge to accommodate using agile processes.

2.1 Security in Agile Processes

Security, like any other system property, must be supported by the practices of the
development process. In order to establish acceptable levels of security within a system,
certain tasks must be accomplished during different phases of the project lifecycle and
the process followed must be flexible enough to support and achieve these tasks.

The Risk Analysis and Management Methods, such as Hazard and Operability
Analysis (HAZOP) [14], Failure Mode and Effect Analysis (FMEA) [9] and tradi-
tional security practices involve detailed investigation of a system’s architecture.
Examples of these include formal validation of design and implementation, static
analysis of software, change tracking, and internal and external reviews. Beznosov
and Kruchten [4] conclude that “approximately half of the conventional assurance
methods and techniques directly clash with the principles and practices of agile
development”. XP-based projects develop the simplest system in each step, without
considering functions that will be needed in future iterations. This view conflicts with
traditional security practice, which is essentially a top-down development, or at the
very least an early definition of the security infrastructure on which a system will be
based. A case study which contrasted incremental and top-down architectures [2]
concluded that Agile Security can be achieved by using an Incremental Security
Architecture (ISA). Moreover, [2] states that, “instead of following traditional
techniques, [an Agile process] must have its own, agile, security practices”.

In agreement with this idea of new practices, Beznosov examines XP and
introduces the concept of eXtreme Security Engineering (XSE) [5] and explains how
these practices could be applied in the security domain. XSE aims to deliver ‘good
enough’ security without defining it a priori. The objective of Planning Game, one of
the XP Practices, is defined so as to plan small releases in short iterations while
delivering ‘good enough’ security through tested functionality units. The paper also
gives the extended definitions of other practices such as testing, continuous
integration, simple design and refactoring which are adapted to XSE.

In summary, several researchers have considered the problem of achieving security
through agile processes; however, there are few concrete case studies that either
demonstrate new, agile security techniques, or explore the use of current Agile
practices for introducing security mechanisms and satisfying security concerns. In this
paper, we are aiming at exploring security in systems developed using agile
processes, and are not intending to try to generate documentation in order to meet
current certification standards.

2.2 Refactoring in Agile Processes

Refactoring is a disciplined approach for supporting change in systems [6].
Refactoring can be expensive in model-based development, where amendments in
code can lead to modifications in related documents and diagrams. By contrast,
refactoring is an important practice in agile processes. For example, code simplicity is

 Security Planning and Refactoring in Extreme Programming 157

achieved by different sized refactorings; refactoring may mean small design changes
such as ‘Pull-Up Field’ or ‘Extract Method’ [3], but it may also mean substantial
restructuring of a superclass, which may then affect subclasses with many references.

Some of the activities that can be put into practice when refactoring is required are
listed below; these will be important for the discussion of security to follow.

• The communication level must be increased: When a refactoring decision is
taken, all the programmers whose code may be affected from the change must
be included in the refactoring process and the changes applied to the system
must be made explicit to everyone in the team.

• Simplicity must be maintained: When a refactoring goes beyond small or
pattern-based refactorings, the refactoring must be done in smaller steps. This
will not only ease the understanding of individuals about the changes done,
but also allows backtracking in case an incorrect amendment is made.

Determining a “Refactoring Route” [10] may also help manage the tasks introduced
through a Refactoring pattern. The aim of this is to define a route from the current
design to the desired one. It describes the refactoring steps, each of which should be
achievable in one or more integration steps, and which ultimately result in the desired
design. In order to adhere to agile process principles, each step must result in a
working system.

The next section places these concepts in context by providing a concrete example
where security requirements are introduced to the system under design in a later stage,
through refactoring methods.

3 Case Study

This section gives an overview of the steps of a practical project carried out to explore
the effective usage of refactoring techniques in agile processes, in particular to
integrate security at a late stage in software development. The intention was to fit
iterations focusing strictly on security concerns into a traditional XP development.

The project aimed to produce an online estate agency for buying and selling
properties, e.g., apartments and houses. This web-based application provides a service
to users where they can search through properties listed on the site, subscribe to the
site and contact the estate agency that owns the site, by using a messaging service
provided by the agency. The system requires users to register in order to conduct
transactions beyond simple searching for properties.

There were two main deliveries. The first occurred when the application met all the
service-related requirements and second delivery integrated solutions for security
requirements on top of this system.

We present the case study in two sections, the first outlining how system functiona-
lity was developed (where security concerns were ignored), and the second describing
how the security mechanisms were injected into the system by using refactoring
patterns. The XP practices followed in the case study will also be mentioned where
necessary. The reader is referred to [1] for further details.

158 E.G. Aydal et al.

3.1 First Delivery

The project began with the preparation of story cards as the ‘Planning Game’ practice
suggests. The estate agency services to be delivered were written in story cards in
detail and prioritized according to their importance. These story cards roughly
determined the milestones of the project and the contents of each iteration. According
to the story cards, 2 releases were planned for the first delivery, of which the first
included 8 iterations and the second completed the remaining 3 iterations. However,
more iterations than identified on the story cards were needed, in order to simplify
individual iterations, establish infrastructure, and allow for refactoring. In total the
first release needed 15 iterations, and the second release required 8 iterations. Table 1
gives the iteration list for the first delivery, i.e., for the first and second release. The
estate agency itself is referred to as Housing within this table.

Each iteration consists of straightforward XP design, testing and implementation
phases, ignoring all security concerns. A template was used to record a short summary
of actions and alterations in each iteration; see [1] for examples.

The Stories marked with an asterisk in Table 1 are those, which weren’t discussed
in the Planning Game phase of the project, but became necessary along the way. For
example, no database (DB) consideration was necessary until Iteration 3. Following

Table 1. Iteration List for Release 1 and Release 2

 Security Planning and Refactoring in Extreme Programming 159

the design of the ‘search’ page, different DB servers were compared, an appropriate
one for the system was chosen and a table to hold the property records was created.

Eight of the aforementioned iterations made use of refactoring patterns in order to
introduce a new feature or to simplify the code. ‘Hide Delegate’ and ‘Extract Method’
[3] are examples of the techniques used.

After the first delivery, the system satisfied all functional requirements. The users
could search the site for available properties, subscribe to email notifications of
interesting available properties, send messages to the estate agency in order to
buy/sell properties, and reply to messages from the agency by using the services on
the site. However, security had been ignored. For example, anyone who knew a
member’s username could access that member’s home site and display their
messages. These concerns were dealt with in the second delivery.

3.2 Second Delivery

Introduction of security requirements late in a project lifecycle potentially imposes
many changes to the system. To manage various types of change at the same time, we
extended the Planning Game to incorporate security requirements. This section gives
a summary of this approach, with its application to adding security mechanisms to the
online estate agency. The reader is referred to [1] for further details.

First, the ‘Define and Partition’ strategy is used in order to divide the system into
smaller, but manageable pieces. This approach is similar to the one explained in [2]
where partitioning is proposed in order to implement security requirements
incrementally. In the estate agency, the assets, operations and technical features were
taken as the entities to be defined and partitioned. Assets are defined as data to be
protected; these are divided into two categories:

• Data that should not be accessible through any service (though it may be used
by the system during service provision) and whose existence creates a threat for
the system, such as passwords.

• Data that is accessible through some operations.

Partitioning helped to observe the behaviour of the system from different angles, i.e.,
the type of data saved within the system, the tasks carried out by the system by using
the data and the relations of the system with exterior components that support the
functioning of the system. Operations are services provided by the software and they
are classified according to user access. Technical features are defined as the points
where the system may suffer due to the development environment and/or the tools
used. For the estate agency, the technical features determined were:

• Browser-related issues
• Web Server-related issues
• DB Server-related issues
• Programming Language-related issues

By defining the assets, the scope of the system was circumscribed in terms of data;
this effectively determined security requirements using a conventional risk-based
analysis. Defining the operations determined the scope of the system in terms of
functionality; this identified an appropriate authorization, or access policy, for system

160 E.G. Aydal et al.

users. Finally, reviewing the technical features of the system allowed security
requirements to be introduced to protect, or eliminate, potential vulnerabilities.

These categorizations can be extended for different applications. The ones
presented were specifically considered for the system under discussion.

Following the above process gave rise to the security requirements in Table 2.

Table 2. Security Requirements and to-do list

Purpose Risk Type Security Requirement
Encapsulate the data that is defined as
‘should not be reachable’

Browser-side
SQL-Server side

Confidentiality (asset)

Make sign-in secure (to ensure that anyone
who knows the URL of the member home
page can not display it)

Browser-side Authentication (technical
feature)

Avoid multiple concurrent access by one
user

Browser-side
SQL-Server side

Authorization (operation)

Provide required functionality to Housing N/A Authorization (operation)
Provide required functionality to Agents N/A Authorization (operation)
Avoid insertions to DB by unauthorized
users through browser with a direct link to
JSP page.

Browser-side Authorization (operation)
Confidentiality (technical
feature)

Avoid deletions to DB by unauthorized
users through browser with a direct to link
to JSP page

Browser-side Authorization (operation)
Confidentiality
(operation)
 (technical feature)

After signing out, the user shouldn’t be
able to turn back to his home page

Browser-side Authentication (technical
feature)

Prevent output being cached by the
browser

Browser-side Confidentiality (technical
feature)

Avoid invalid users Browser-side Authentication
Make subscription through a secure
channel

Browser-side
Web Server-side

Confidentiality (technical
feature)

Secure the accesses to MySQL DB Server-side Confidentiality (technical
feature)

Due to time constraints, only the security requirements in Table 2 could be imple-
mented; additional iterations could improve on the overall security mechanisms and
coverage of requireements. Our intention was not to show how to implement each and
every possible security requirement, but rather to demonstrate that the process of
securing a system can be integrated with XP practices.

The strategy described above served as the Planning Game for this phase and the
decisions taken at this stage were defined and prioritized according to customer needs
and choices. In this way, the Planning Game was able to incorporate three critical
sources of security requirements:

• a user authorization policy
• a risk-based assessment of system assets
• a review of technical vulnerabilities

 Security Planning and Refactoring in Extreme Programming 161

Once the security requirements were known, the next step was to prioritize them and
to take the required actions in order to avoid these vulnerabilities.

The following section explains how refactoring patterns were used to implement
the changes to the system listed in Table 2.

3.3 Refactoring in Late Security Integration

Each purpose field in Table 2 was analyzed and feasible solutions were proposed.
Here is a list of security mechanisms introduced and the refactoring techniques
applied in order to adjust the system to these alterations smoothly:

Table 3. Security Mechanisms introduced

Security Mechanism Refactoring Techniques Applied
(taken from [3])

Encryption of Password Replace Method with Method Object

Session ID Replace Data Value with Object

Session Check Extract Method

Active User Extract Method

Provide Extra Functionality to Housing Substitute Algorithm
Extract Class / File
Usage of Middle Man

Provide Extra Functionality to Agents None

Request Owner Check Extract Method

Provide Proper Sign-out None

Prevent Caching Extract Method

As shown in Table 3, modifications required to deliver the security for this project
are achieved through small releases and short iterations by using relevant refactoring
techniques. Each iteration introduced a new security mechanism or extended the
coverage of an existing one. As XP suggests, the software was in working condition
after the completion of each iteration.

4 Conclusions

We have outlined the results of a concrete study to evaluate the use of Extreme
Programming practices for introducing security concerns late in development. Our
experience suggests that XP practices, in particular the Planning Game and
Refactoring, can be used to achieve an appropriate degree of security. In terms of
achieving security requirements within XP, we make the following observations:

• Introduction of security requirements late in the project lifecycle potentially
imposes many changes to the system. To manage various types of changes at the
same time, an elaboration of the Planning Game was used. Conceivably, this idea
could be used to achieve other system-wide requirements, e.g., dependability.

162 E.G. Aydal et al.

• The Planning Game can play a substantial role in establishing security
requirements within Extreme Programming, via partitioning over assets,
operations, and technical features of a system. This in effect provides a new,
agile practice for achieving security within an iterative and incremental
development, and is compatible with the ideas in [2], since the security views
created in this modified Planning Game are effectively small incremental
security architectures.

• Refactoring can be integrated smoothly with this lightly modified Planning
Game practice, where refactorings are applied to introduce security mecha-
nisms whose need was identified during prioritization and vulnerability
assessment.

Instead of attempting to create the documentation demanded by conventional
processes and assurance standards, we have focused on how agile practices can be
used to build fit-for-purpose secure software that meets the most important security
requirements from accepted practice – that is, our definition of “good enough”
security is that security mechanisms in our system are motivated by a user’s
authorisation policy, risk analysis, and vulnerability assessment. The results of our
work suggest:

• The need for a mechanism, namely an incremental security architecture to show
how security features are structured to deliver system level security goals, and
act as a trigger for refactoring.

• That it is possible to incorporate vulnerability assessment, as well as risk-
analysis, in the Planning Game.

• That refactoring is central to security quality, both to implement security
features, and to re-structure or partition the system to simplify the relationship
between security mechanisms and the system goals they support.

We are continuing to explore the use of XP practices for achieving complex (and
potentially system-wide) refactorings. We have completed preliminary experiments
on refactorings to produce Web services from web applications using XP practices.
In these experiments, the classes and methods used in a web application directly
drive the production of methods exposed in Web services. Of course, this approach
to producing Web services is incomplete as not all features of a web application are
implemented as individual methods: some are emergent features that result from a
collaboration among methods. Our observation so far is that the traditional XP
lifecycle can be followed in producing Web services from web applications (e.g.,
each Web service can be described in separate story cards). We observe that if
production of Web services from a web application is known to be intended at an
early stage of development, then it would be a good practice to note this in the story
cards for the main application. This new practice reminds developers that such
annotated story cards should be encapsulated in order to generate services when the
time comes.

Acknowledgement. This work was supported by EPSRC grant GR/66421/01.

 Security Planning and Refactoring in Extreme Programming 163

References

1. Aydal, E. G., Extreme Programming and Refactoring for Building Secure Web-Based
Applications and Web-Services, MSc Thesis, University of York p. 102. 2005. http://
www.cs.york.ac.uk/~aydal/thesis.pdf

2. Chivers H., Paige, R.F., and Ge X., Agile Security using an Incremental Security
Architecture, Extreme Programming and Agile Processes in Software Engineering in The
6th International Conference of XP, LNCS 3556, Springer-Verlag, 2005

3. Fowler M., Refactoring, Addison-Wesley, 1999.
4. Beznosov K., Kruchten P., Towards Agile Security Assurance, in Proc. New Security

Paradigms Workshop, 2004.
5. Beznosov K., Extreme Security Engineering: On Employing XP Practices to Achieve

“Good Enough Security” without defining it, The First ACM Workshop on business Driven
Security Engineering (BizSec), ACM Press, 2003.

6. Fowler M., Refactoring Home Page. http://www.refactoring.com/, 2005.
7. Paige, R.F., J. Cakic, X. Ge, H. Chivers, Towards Agile Re-Engineering of Dependable

Grid Applications. In Proc. Genie Logiciel & Ingenierie de Systemes et leurs Applications
(ICS-SEA’04), CNAM, 2004

8. Introduction to Risk Analysis, http://www.security-risk-analysis.com/introduction.htm
9. Failure Mode and Affects Analysis, http://www.parnassus.org/FMEA_top.pdf

10. Lippert M., Towards a Proper Integration of Large Refactorings in Agile Software
Development. University of Hamburg, 2004.

11. The Common Criteria, Common Criteria Support Environment (CCSE), August 1999.
http://www.commoncriteria.org/cc/cc.html.

12. Beck, K. Extreme Programming Explained, Addison-Wesley, 1999.
13. Wäyrynen, J., Bodén, M., and Boström, G. Security Engineering and eXtreme Programming:

An Impossible Marriage?, Proceedings of the XP/Agile Universe 2004: 4th Conference on
Extreme Programming and Agile Methods, LNCS 3134, Springer-Verlag, 2004.

14. Kim, S., Clark, J.A., and McDermid, J.A. Rigorous Generation of Java Mutation
Operations using HAZOPs, in Proc. Genie Logiciel & Ingenierie de Systemes et leurs
Applications (ICS-SEA) 1999.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 164 – 168, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Divide After You Conquer: An Agile Software
Development Practice for Large Projects

Ahmed Elshamy1 and Amr Elssamadisy2

1 ThoughtWorks Inc.
Chicago, IL 60661 USA

Aselshamy@ThoughtWorks.com
 2 Valtech Technologies

Addison, TX 75001 USA
Amr@Elssamadisy.com

Abstract. Large software development projects are not agile by nature. Large
projects are not easy to implement, they are even harder to implement using ag-
ile methodologies. Based on over 6 years of experience building software
systems using agile methodologies we found that we can modify agile method-
ologies to be successfully applied to large projects. In this paper, we will intro-
duce a development practice, which we call Divide After You Conquer to reduce
some of the challenges during the development of large agile projects. By solv-
ing the base problem first with a smaller development team (Conquer phase)
before expanding the team to its full size (Divide phase) we can solve many of
the problems that occur with larger projects using agile methodologies.

1 Introduction

Large software development projects have their own set of problems that need to be
addressed [2,3,4,6,8,9]. Roughly speaking, we consider a development project large if
the development team is anywhere between 50 and 100 people (includes developers,
testers, business analysts, and managers). Many of the standard development prac-
tices in agile methodologies do not provide their expected consequences [1,2,9].

In this paper we describe a development practice that we have used on several dif-
ferent projects at multiple companies. This development practice, which we name
‘Divide After You Conquer’, solves many of the base problems first before expanding
the team to its full size. This practice is related to much work that has been done be-
fore in non-agile development processes [6,7,10] – i.e. this is not a new problem.
These practices and processes include prototyping, architecture-driven development,
and a full upfront high level design as recommended by the Unified Process to name
just a few. Divide After You Conquer is however different from each of these prac-
tices in that it is permanent and not throw-away like prototypes and is done in a test-
driven manner as opposed to upfront design as suggested by the Unified Process [6].

2 Challenges in Applying Agile to Large Projects

One of the aspects common to many agile development methodologies is that the
entire team (business analysts, developers, and testers) collaborate very heavily. With

 Divide After You Conquer: An Agile Software Development Practice 165

a large project, this type of collaboration is difficult at best. What we have found
again and again that we tend to break up into subteams for better communication.
The downside to subteams is the possibility that the subteams build stove-piped sub-
systems if communication is insufficient among the teams. Even if the group commu-
nication is successful we can have problems of consistency and duplication that goes
undiscovered. Of course, there are other practices that help alleviate these problems
such as rotating team members among the subteams, having an overall design docu-
ment, etc. [4,6]. We are not invalidating these techniques, but in our experience they
are not sufficient to alleviate the problems typical when separate subteams build sepa-
rate parts of the system. Another way to state this problem is that the different sub-
teams may result in a non-homogeneous and inconsistent architecture.

Also, as we have indicated above, large projects using agile methodologies may
not be as amenable to recognizing and responding to change. Specifically there are
two different aspects, i.e. the recognition of a change and the response to that change.

2.1 Recognizing Change

The first part, of recognition of change, is greatly affected by the size of the team and
the size of the artifacts (code, use cases, tests). As we have more people, whether or
not we have multiple subteams, it is more difficult to determine if a change in one part
of the system affects other parts of the system. The standard way that this has gener-
ally been addressed is either upfront design to make sure that everything matches and
extensive documentation. With typical agile development practices upfront design is
looked down upon because of the cost of design carry and the fact that requirements
change. Agile development methodologies also tend to be light on documentation,
and non-agile methodologies that are not documentation-light have documentation
that frequently is out of synch with the project.

2.2 Responding to Change

The second part, responding to change, is usually done via refactoring. Refactoring is
a good solution that relies on a large test framework as a safety net. There is nothing
wrong with this, refactoring is very efficient in general. There are, however, large
refactorings which are difficult and expensive to perform – so we want to minimize
these refactorings. We have the non-agile solution to this problem which is design
upfront, but designing upfront generally results in a design that is more complex than
that needed by the exact system causing a design carry cost throughout the lifetime of
the project. This particular problem, that of upfront design, has been discussed exten-
sively in the agile development community. We need to find another way to solve our
large refactoring problem other than upfront design.

3 Divide After You Conquer

Basically, instead of dividing the work first and then solving each sub-problem, the
starting team is a core team (usually about 20-30% of full team) that has the most
experienced developers, testers, and business analysts and it builds out the main busi-
ness cases in a test-driven manner. This first phase lasts a non-trivial amount because

166 A. Elshamy and A. Elssamadisy

we want to build out enough of the project that we touch all of the primary business
areas (without dealing with alternative/exceptional scenarios) and build out most of
the architecture. Because we have a small team, a full agile methodology works with-
out modification. We end the first phase when we have a stable code base with a sig-
nificant portion of the architecture built out and a broad swathe of business built. At
this point we have conquered the problem and now it is time to divide by growing the
development team and splitting up into smaller subteams to grow the project into a
fully functional software system. Because the architecture has been built out in a test-
driven manner we have the amount of complexity needed but no more. Teams now
have a homogeneous architecture in the different subprojects. We want to stress that
this is not the only practice needed for agile development with large projects, but it is
a significant one. Unlike [2] we clearly define when we reach a stable architecture. [2]
recommends just declaring the architecture is stable to give the courage for develop-
ers to work on the existing code.

3.1 The Conquer Phase

The conquer phase of the project will introduce a stable working example of the ar-
chitecture and system design. This working example is built iteratively with constant
refactoring and ensures that the design works for the current requirements. The sys-
tem design may include layering, object models and screen layouts. All that would be
a starting seeds for other subteams to follow and build upon. Creating the design
through an iterative process according to the business need reduces the risk of redes-
igning the system when a standard upfront design approach is used.

The team will define a set of use cases that are broad enough to touch/interact with
most parts of the proposed system. These use cases have to be useful to the business
and simple enough to be implemented within a few months. The goal of the conquer
phase is to implement these use cases in an iterative and a test-driven manner.

Testers and business analysts will come up with standards/working examples for
story cards, testing criteria, testing framework that would be followed after the split.
This work will act as the basis for later work by the larger team. This can be seen by
many as ‘reinventing the wheel’ and that these standards can be set upfront. We found
out that building a set of experiences for this specific project that can be reused by the
larger team in the divide phase is more effective than reinventing the agile develop-
ment process for each sub-project.

The initial development team (developers, testers, business analysts) that started on
that early project they would have a very good over-all picture of the project. They
were involved in the implementation of the simple business cases that touch most if
not all business areas. They also understand the overall flow of the application. This
knowledge will enable a better split into teams when we reach the divide phase. This
group will also work as mentors for the remaining team in the next phase.

Finally, the starting project is not a prototype. It is a set of production quality sto-
ries, code and tests that will be used as the basis for building out the entire system. In
this case the conquer phase has the same goals as the elaboration phase in a develop-
ment process like the Unified Process [10] – namely to flush out the architecture and
address any high-risk areas. Some problems may not appear unless we try to imple-
ment a real life situation with a complicated enough business use case.

 Divide After You Conquer: An Agile Software Development Practice 167

3.2 The Divide Phase

Divide Subteams by Business Areas: The divide phase starts when the project is di-
vided into sub-teams, which is a common practice for large projects. Sub-teams are
more manageable and they can adapt to change more easily. A common practice also
is to split based on business areas. Dividing into business areas helps understanding
the business within a business area – understanding the business is of prime impor-
tance to a successful project. The business functionality will also drive the code,
which is a major benefit of applying agile methodologies. Jutta Eckstein [2] shows
similar practice. Eckstein recommends starting small and growing slowly. It did not
emphasize on when to start dividing into subteams or when to start to grow the team.
We clearly recommend splitting the teams after completion of the broad business case
and the team will only grow after the division into subteams.

Staff gradually: Staffing the sub-teams would be by assigning members of the exist-
ing team (the team on the conquer phase) to sub-teams. New team members will also
be assigned to sub-teams. No specific requirement on the newly joined members,
except being open for using agile methodologies. The staffing may occur as initial
staffing to start the sub-teams and gradually add new team members to sub-teams as
needed. Staffing gradually would help the knowledge transfer to be done smoothly,
releasing the load on the conquer team to do knowledge transfer properly to new team
members. The initial staffing should allow for pairing between members of the con-
quer phase and newly joined members. Pairing may include developers, BA and QA
team members as well.

Transfer Knowledge: In the beginning of the Divide Phase knowledge needs to be
transferred from the core team members to the additional team members. There are
several ways that we have seen this done: code reviews, pair programming, and men-
toring are three of the most common techniques. Code reviews are not necessarily
one-shot deals but can be done repeatedly until the expanded team becomes cohesive.
Pair programming is not always the easiest practice to implement depending on the
environment of the company, but when allowed has been one of the most successful
techniques we have seen. Finally, mentoring lies somewhere between the two ex-
tremes where the core team members take on the role of mentors to the new members
to transfer business, testing, and design knowledge.

Rotate team members from the newly staffed members: During the course of project
rotation of team members between sub team will be helpful to transfer knowledge
between sub-teams. Members rotated to new teams may work on interfaces between
the two sub-teams, the one they were originally on and the newly joined. This also
helps maintain the consistent and homogenous architecture that we built in the Con-
quer phase. By rotating the team members they are exposed to the entire system
which allows for a large project version of the eXtreme Programming practice of
Collective Ownership.

4 Challenges in Applying This Practice

The practice mandates having a highly skilled set of developers at the beginning of
the project (the conquer phase). The high skilled developers should be available for
the rest of the project. In the beginning of the divide phase staffing with other

168 A. Elshamy and A. Elssamadisy

developers, business analysts and testers should start. In some situation this staffing
pattern may not be applicable, due to some organizational structure of the company.
Still in some other companies as it’s the natural way to staff a large project. Compa-
nies will give much attention to large projects and they would staff them with their
best team members in the beginning. As the team grows they may staff the project
from new hires, consulting companies or developers that are freed from other pro-
jects. This common scenario may match the staffing time line proposed.

Defining the use cases or the core part of the system is the main challenge when
applying this practice. Some systems may have convoluted set of functionality with
high interaction. Finding a simple business case that satisfies the core system is hard
is such systems.

Knowledge transfer between subteams is still a challenge. Members’ rotation is
still not enough to ensure successful communication between subteams. Other prac-
tices must be involved to enhance the communication between subteams and ensure
proper interfaces between teams. These practices like [8] are out of scope of this
paper.

References

1. Cockburn, A. Agile Software Development, Pearson Education, Indianapolis, IN. (2002).
2. Eckstein, J. Agile Software Development in the Large: Diving into the Deep, Dorset

House Publishing, New York, NY. (2004).
3. Elssamadisy, A. XP on a Large Project- A Developer’s View, in Extreme Programming

Perspectives, eds. Marchesi et al., Pearson Education, Indianapolis, IN. (2003).
4. Elssamadisy, A. and Schalliol, G., Recognizing and Responding to “Bad Smells” in Ex-

treme Programming, presented in International Conference on Software Engineering 2002.
5. Evans, E. Domain-Driven Design: Tackling Complexity in the Heart of Software, Pearson

Education, Indianapolis, IN. (2004).
6. Jacobi C. and Rumpe, B., Hierarchical XP: Improving XP for Large-Scale Reorganization

Processes, in Extreme Programming Examined, eds. Succi et al., Pearson Education, Indi-
anapolis, IN. (2001).

7. Larman, C. Applying UML And Patterns, Prentice Hall, Upper Saddle River, NJ. (2001).
8. Rogers, O., Scaling Continuous Integration, presented in XP 2004, (2004).
9. Schalliol, G, Challenges for Analysts on a Large XP Project, in Extreme Programming

Perspectives, eds. Marchesi et al., Pearson Education, Indianapolis, IN. (2003).
10. Scott, K. The Unified Process Explained, Pearson Education, Indianapolis, IN. (2001).

Augmenting the Agile Planning Toolbox

J.B. Rainsberger

Independent Consultant
me@jbrains.info

Abstract. Agile approaches including XP and Scrum grew out of one
particular team’s practice, so its advice contains hidden assumptions we
need to identify. If we do not, we risk seeing these techniques fail a team,
or a team fail with these techniques. This report describes one team’s
experience learning adaptive planning, and the steps it took to augment
the out-of-the-box process that the agile literature suggests. It shows how
the team’s environment has motivated these changes while allowing the
team to continue to engage in an evidence-based continuous improvement
program.

1 Project Background

I joined this project approximately three months after it began. Although the
team had completed some good work, they were unable to run their product from
end to end when I asked them to. They had built their product in layers, rather
than shipping small, working stories. They had a product backlog and sprint
backlogs, but with items estimated anywhere from a few hours to thousands of
hours. Since the team was not delivering working product increments as Scrum
suggests[5] and some increments were estimated with such high risk of error, it
was not clear when the team completed any individual backlog item. This made
it difficult to know when they had completed enough features for a suitable
public release. I felt that measuring velocity for this team was meaningless,
given the way they were writing and implementing stories, so I recommended
they start again. We did that, starting with one, simple story running from end
to end.

2 Planning Techniques

After completing the first few stories, we started with a simple set of agile
planning techniques slanted towards Scrum, the agile flavor the company was
adopting. My goal was to guide the team to deliver on a predictable sched-
ule to help management plan releases with confidence. We started with these
techniques:

1. Writing stories
2. Estimating in points
3. Product backlog

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 169–174, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

170 J.B. Rainsberger

4. Measuring velocity per calendar-month sprint
5. Sprint backlog
6. Projecting velocity using Yesterday’s Weather[2]

In keeping with the spirit of the YAGNI principle[3], we began planning and
tracking the project with this minimal toolbox. Within the first few days, it
became clear that these techniques would not suffice on their own. One of the
central assumptions of agile planning is that over time, teams are allowed to
converge to a consistent pace otherwise it is difficult to project accurately the
contents of a release. Well-known agile planning practices rely on statistical
effects such as the central-limit theorem to simplify the planning process[1]. They
recommend delivering small stories, estimated on a small scale of 1–3 points and
assuming that the team’s throughput in the next sprint will be the same as its
throughput in the last sprint. They assume that the average cost of a story point
converges quickly, but the kinds of instability this team experiences increases the
variance of the cost of each story point completed. Two instabilities stand out
in their effect on this team: availability of people and understanding of stories.

3 Team Continuity

This team endures unusually high personnel instability, having a higher mem-
ber turnover rate than I have ever seen. Support works commonly pulls team
members away from their primary project for days, even weeks at a time, with
at most a few days’ notice. The irony, of course, is that this causes even more
support work on future releases. While losing people for extended periods is jar-
ring enough, we cannot even rely on the availability of those “core members” of
the team from day to day. Ongoing team members are commonly distracted
with duties that fall outside the team’s mandate, and to a degree I have never
seen before. Early on, when I arrived to coach on a given day, it was common
for at least one person not to be there who had been there the day before. I
began to track on a whiteboard when each team member would be out of the
room that day, and there would be 3–6 entries each day, making a team of 6–8
programmers act more like a highly unstable team of 3 or 4. A story might go
through three different owners on its way to completion, allowing details to fall
easily through the cracks.

These instabilities have caused precisely the problems one would expect. Mul-
titasking at the individual level is known to lower productivity[4]. This team’s
imposed multitasking has had predictable results: their velocity remained en-
tirely unpredictable. Even as we looked at how to solve this problem, we found
another, more basic issue that made velocity a meaningless measure for this
team.

4 Difficulty with Stories

When it first began working with stories, I counseled the team to keep sto-
ries small enough for a pair to complete in 3 days. Since they were learning

Augmenting the Agile Planning Toolbox 171

test-driven development, this meant stories were at times impossibly small–much
smaller than the size needed to represent tangible progress to the end user. This
gave the team’s analysts fits as they learned how to be good XP customers. We
have combined story-writing workshops with sheer determination on their part
to learn to deliver software with stories, including how to split larger ones into
small, “vertical” slices, rather than into technical layers. Unfortunately, agreeing
on how to write a story is only half the problem.

While struggling with what stories meant, the team has also struggled with
the meaning of done. Recalling my first day on the job, I had asked the team’s
then-Scrum Master what one problem he would most like me to try to fix. He
asked me to teach the team what it meant to be done a piece of work, including
code, tests, customer acceptance and deployment. The team continues to struggle
with this, most recently encountering problems trying to deploy their work.
They had lost focus on the importance of deployment and fooled themselves
into believing they had completed stories that did not work during sprint review
demonstrations. This imprecise working definition of “done” contributes to the
variance in velocity as the team effectively borrows time from future sprints to
“clean up” the work from the previous sprint.

5 Fixing the Cost of a Story Point

In order to make some sense of how quickly the team is going, I knew we had
to normalize the team’s velocity somehow, taking into account its personnel
instability and continuing distraction. I began simply, by counting the amount
of time each person spent in the room each day, then keeping a running total
along with the total of story points delivered. This resulted in data such as
“25.5 people have delivered 8 points,” meaning that the team delivered 8 points’
worth of stories while expending the equivalent of 25.5 person-days’ worth of
effort. This allowed us to compute the team’s velocity in terms of the number
of actual people available, rather than assuming the size and availability of the
team is stable. We found that indeed the number of available people-days varied
so much from week to week that projections several sprints into the future could
not be believed. We have brought this up repeatedly to management, but they
have not yet made it a top priority to stabilize the team. Even after accounting
for this difference, velocity per available person-day was still not converging, so
the current Scrum Master began to look for a way to make sense of how the
team was progressing.

In response to these problems, the current Scrum Master has developed a plan-
ning template that provides much-needed additional information with a low cost
of operation. The team now counts both the number of story points completed
and individual, daily team member availability, which the team calls “actuals.”
Each day at the daily scrum, the Scrum Master asks each team member how
much time they spent working on the current project, rather than outside the
project. Each person reports their time spent in 1

2 -day increments, from 0 to
2, in case someone works overtime. With this information, the Scrum Master is

172 J.B. Rainsberger

able to compute the cost of each story point in person-days, which he calls the
team’s load factor. He also notices trends in the availability of each person and
uses this information in sprint pre-planning to present concerns to management
about their degree of distraction in the previous sprint. During this meeting he
gathers information from the managers of each team member about how avail-
able they can be expected to be in the coming sprint. With this information he
subjectively adjusts the team’s availability so he can project the team’s velocity
in the coming sprint. His calculations run as follows:

1. maximum capacity is working days × number of people.
2. planned capacity is maximum capacity − planned absences.
3. actual capacity is the sum of team actuals.
4. availability factor is actual capacity ÷ planned capacity.
5. load factor is points completed ÷ actual capacity.
6. projected availability factor is estimated by adjusting the previous avail-

ability factor in light of management’s best guess about each person’s avail-
ability for the coming sprint.

7. projected load factor is previous load factor × projected availability factor
÷ previous availability factor.

8. sprint budget (in points) is planned capacity ÷ projected load factor.

He generates along with the usual Story Burnup chart a Resource Burnup,
which compares actual personnel availability not only to the maximum possible,
but to what everyone had expected during sprint pre-planning. This feedback
shows management with hard data one of the driving forces keeping the team’s
velocity down. As the Scrum Master told me, he wanted to turn a gut-feel dis-
cussion into a fact-based discussion, a sentiment clearly aligned with the tenets
of adaptive planning. Much like the shape of a Story Burnup highlights cer-
tain problems with a team’s performance, the shape of the Resource Burnup
alongside the Story Burnup clarifies for all involved the effects of management’s
decisions to deploy people inside and outside the team. All this work clarifies
the average cost of a story point, reducing the team’s tendency to overcommit,
one of the Scrum Master’s key goals.

6 Fixing the Value of a Story Point

Aside from the usual periods of chaos associated with acquiring any new skill
[6], the team has faced a serious challenge in using stories to help them deliver
features: what it means to complete a story. In response to the growing number
of submitted stories that were not accepted, or that failed after deployment, the
team has tightened its acceptance criteria. It has encouraged the analysts to
apply stricter standards when deciding whether to accept stories, which include
“planned functionality must show demonstrable progress”, “deployed functional-
ity must pass all programmer and acceptance tests” and “shipped functionality
must be validated by the customer or a proxy.” While none of the items on
their checklist are startling to the experienced agile practitioner, they represent

Augmenting the Agile Planning Toolbox 173

a considerable step forward towards standardizing the value of a point. Holding
each story to these standards will help stabilize the point as a currency of deliv-
ered feature so that calculating the cost of a story point, as we described in the
previous section, has merit and is meaningful.

7 Conclusions and Future Work

The XP and Scrum literature strongly suggests simple planning tools, limited
mainly to backlogs, story cards, points (or ideal hours) and Yesterday’s Weather.
It warns against teams complicating their planning process prematurely. While
this team’s planning process is certainly more involved than I am accustomed to
seeing on agile teams, this complexity has certainly shown to be needed in light
of an unusually volatile environment. The team has benefited from an increase
in confidence in the plan from sprint to sprint and stakeholders now have clearer
answers to the question, “Why are you not going faster?” The team is able to
quantify the effects of their people deployment decisions on this project, which
allows everyone involved to make the appropriate trade-offs more effectively. It
will take some time for these improvements to manifest themselves in a more
predictable velocity from sprint to sprint, but the team has taken a strong step
in that direction by augmenting the agile planning toolbox based on evidence
that such changes were needed.

8 Epilogue

At press time, not much has changed in the way that management assigns people
to projects. The larger organization continues to struggle with individuals as
bottlenecks, making it difficult to allow them to concentrate on new product
development. These people continue to be the only ones who can handle certain
support issues. As the organization adopts practices like automated acceptance
testing and test-driven development more widely, it is hoped that the number
of urgent support issues will decrease, allowing high-demand individuals to be
distracted less and concentrate more on contributing to new development. While
they are making small improvements in this direction, the organization remains a
long way–years, perhaps–from being able to use velocity, points and Yesterday’s
Weather as the XP literature intends them to be used.

Acknowledgements

The author would like to thank Object Mentor, Inc. for setting up the oppor-
tunity to work with this particular team. At press time, our client had not yet
approved the use of their name in this report; but in spite of this, I would like
to thank the unnamed Scrum Master of this team for spending time with me
to explain how he arrived at his current planning process. I would finally like
to thank the members of the team for their hard work, their healthy skepticism
and their receptiveness to strange ideas.

174 J.B. Rainsberger

References

1. Mike Cohn, ”Agile Estimating and Planning”. Presented to SD West Expo 2004.
http://www.mountaingoatsoftware.com/pres/sdwest040317 aep.pdf

2. http://c2.com/cgi/wiki?YesterdaysWeather
3. http://c2.com/cgi/wiki?YouArentGonnaNeedIt
4. ”Executive Control of Cognitive Processes in Task Switching,” Joshua S. Rubinstein,

U.S. Federal Aviation Administration, Atlantic City, N.J.; David E. Meyer and
Jeffrey E. Evans, University of Michigan, Ann Arbor, Mich., Journal of Experimental
Psychology - Human Perception and Performance, Vol 27. No.4

5. Ken Schwaber, Mike Beedle. Agile Management with Scrum. Prentice Hall, 2001.
6. Gerald M. Weinberg, Becoming a Technical Leader. Dorset House, 1986.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 175 – 180, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Incorporating Learning and Expected Cost of Change
in Prioritizing Features on Agile Projects

R. Scott Harris1 and Mike Cohn2

1 Montana State University–Billings
sharris@msubillings.edu

2 Mountain Goat Software, LLC
mike@mountaingoatsoftware.com

Abstract. Very little has been written to date on how to prioritize and sequence
the development of new features and capabilities on an agile software develop-
ment project. Agile product managers have been advised to prioritize based on
“business value.” While this seems an appropriate goal, it is vague and provides
little specific guidance. Our approach to optimizing “business value” uses tac-
tics to minimize costs and maximize benefits through strategic learning. In
order to provide specific and actionable advice to agile product managers, we
present two guidelines. These guidelines are meant to provide a set of consid-
erations and a process by which an agile product manager can achieve the goal
of optimizing “business value” while recognizing that different product manag-
ers will vary in their notions of what “business value” is.

1 Introduction

Over the past seven years, agile software development processes such as Scrum [1],
Extreme Programming [2], Feature-Driven Development [3], and DSDM [4] have
emerged and their use has become much more prevalent. Central to these processes is
a reliance upon emergent requirements and architecture. On an agile project, there is
no upfront requirements engineering effort. Instead, the project begins with very high
level requirements, often in the form of “user stories” [5]. The project team builds the
software through a series of iterations and a detailed understanding of the require-
ments is sought only during the iteration in which software supporting those require-
ments is written.

A key tenet of agile processes is that these requirements are prioritized by a cus-
tomer [2], customer team [6], or “product owner” [1] acting as a proxy for the end
users of the intended system. Throughout this paper we will use the term product
manager to represent this role independent of the specific agile process employed.

Product managers are given the relatively vague advice to prioritize based on
“business value” [7][8]. Unfortunately, “business value” is both vague and broad
whereas prioritization decision must be specific. Elsewhere, we have argued that
product managers need to consider specific additional guidelines for prioritizing re-
quirements on agile projects that lead to the fulfillment of maximizing “business
value” [9]. This paper outlines those guidelines and discusses their implications for
agile software development projects.

176 R.S. Harris and M. Cohn

2 The “Knowledge Problem” Facing Product Managers

Applying the work of Hayek [10], and Jensen and Meckling [11][12] to agile proc-
esses, we distinguish between “scientific knowledge” and “specific knowledge.” The
former is knowledge that is universal and can, for example, be taught in schools. In
software development, knowledge of various programming languages and specific
algorithms is “scientific knowledge.” A challenge on any software development pro-
ject is obtaining the “specific knowledge” regarding what the customer and users
want. This is confounded by the fact that often users do not know precisely what they
want and means not only that the customer and users must learn what they want, but
that the product manager must also learn what they want.

Learning is the acquisition of knowledge. “Scientific knowledge” is learned out-
side of the immediate project while the bulk of “specific knowledge” must be learned
during the development process and can be roughly divided into two categories: (a)
learning what it is that users need and (b) learning the best way to develop software to
meet those needs. Participatory design [13], essential use cases [14], and user stories
[5] are techniques that have been developed to address the former; educated guessing
and experimentation can be efficient ways to generate the latter. Because projects
always will have emergent requirements that cannot be defined upfront, experimenta-
tion may be the cheapest way to learn what will work to satisfy a user’s desires.

Others have studied the issue of prioritizing requirements and have concluded that
Saaty’s analytic hierarchy process (AHP) is “the most promising approach.” [15][16]
[17]. Their focus is on upfront prioritization that implicitly assumes that ALL knowl-
edge necessary to complete the project is given to the product manager at the begin-
ning. Further, the focus has been on mechanics of the prioritization process and not on
discussing the standards used that determine the priority order. Certainly for an agile
project this is an overly simplistic view. Through its use of end-of-iteration reviews
an agile team will learn more about the relative desirability of each feature and may
even alter the criteria by which desirability is judged. This will (or should) alter any
previous prioritization, thereby necessitating a new prioritization exercise. If it is
anticipated that a significant amount of learning will take place as the project unfolds,
expected repetitions of AHP or similar prioritization will be cost-prohibitive.

Our focus has been on how learning if project specific knowledge can affect prod-
uct management. Any one-time upfront non-iterative approach to doing this ignores
the crucial issue of learning. Therefore, we rejected the possibility of discovering or
refining a static model to rank features in favor of suggesting guidelines for a dy-
namic process.

3 Guidelines for Prioritization

We define two issues of concern: “learning” and “the cost of change.” We assert that
early and low-cost acquisition of project specific knowledge and decreasing the cost
of change positively impacts “business value.” Though these two concepts are gener-
ally interdependent (i.e., the more one learns, the lower will be the cost of change),
and related in a manner that depends on specific and particular features, we separate
the issues to emphasize how to address each.

 Incorporating Learning and Expected Cost of Change in Prioritizing Features 177

3.1 Guideline 1: Defer Features with High Expected Costs of Change

There are two aspects to what we call the expected cost of change for a feature. The
first is the risk that a change will be needed; the second is the cost of making the
change. The Expected Cost of Change (ECC) for a feature is the arithmetic product of
the probability that change will be needed and the cost of making the change.

At any time on a project, every feature to be developed has an associated ECC.
Each feature can be ordered from low to high. Those features that are both highly
certain to remain unchanged throughout the project and that have a low cost of change
will be the ones with the lowest ECC; those features that are very likely to change and
that will impose a high cost to change will be the ones with the highest ECC. All
others will fall in between.

When considering only ECC, we have demonstrated that total development cost
can be minimized by developing features in order from lowest ECC first to highest
ECC last [9]. This leads to our first guideline for prioritizing features.

It makes intuitive sense that if a product manager has a choice between developing
features that are more likely to be changed and those that are less, it will lower overall
expected costs if those that are more likely to be changed are deferred until more and
better knowledge about how (or even whether) to develop them is gained. Addition-
ally, one must consider the cost of change and defer developing those features that
will be most costly to change. As the project progresses, project-specific learning will
increase the probabilities that high cost-of-change features will be done correctly the
first time thereby lowering the expectation of ever bearing that cost.

To implement this guideline, if one wants to plan to minimize the total expected
cost of change over the scope of the project when learning takes place, sequential
decisions will have to be based on (1) prioritizing activities that will have the greatest
impact to lower the ECC of the deferred features and (2) deciding which remaining
individual feature has the lowest ECC. In doing so, we should note that it is possible
that these two criteria may not yield the same immediate priority activity. This possi-
bility is discussed below.

Lowering the ECC of deferred features depends on the amount of specific knowl-
edge that is generated during the immediate activity. Addressing that issue leads to
our second guideline.

3.2 Guideline 2: Bring Forward Features That Generate Useful Knowledge

Just as different features will have different ECCs, each feature may have a different
impact on learning. For example, developing one feature may greatly inform the
product manager about the desirability of a feature set or the usability of the main user
interface workflows. Developing different features will impart different amounts of
knowledge to the developers creating the product. While the knowledge expected to
be generated in any immediate activity will not affect the ECCs used in the prioritiza-
tion calculations that decided features to develop in that immediate activity, it will
affect the ECCs of delayed features. This means (a) the value of acquisition of knowl-
edge can be viewed separately from the issue of ranking ECCs given current levels of
knowledge and (b) “useful knowledge” may be prioritize by how it is expected to
lower the ECC of the deferred features.

178 R.S. Harris and M. Cohn

Prioritization based on these two guidelines may or may not agree regarding what
the immediate next activity should be—in which case the product manager or agile
team will have to employ additional criteria to sort out what should be done. How-
ever, the more important outcome is that prioritization using these guidelines will
indicate a lot of features that should NOT be done immediately. Because the specifi-
cation (and even the need for) the deferred features will be more nebulous than those
to be developed immediately, learning that occurs in the immediate activity could—
indeed, should—alter future prioritizations. Therefore, prioritization of features is
only useful in deciding what should be done in the immediate next activity and what
should be delayed. This leads to our third guideline.

3.3 Guideline 3: Incorporate New Learning Often, but Only to Decide What to
Do Next

We cannot emphasize enough that learning is both important and a continuous and
cumulative process that will change the priority of what is best to do next. This im-
plies that a product manager and agile team must be nimble and constantly prepared
to alter plans based on newly-acquired knowledge. Indeed, it should be clear that
becoming wedded to a plan that is any longer than the next activity is both costly to
formulate (if any time is spent on it) and could lead one in the wrong direction.

Because learning is a continuous process, decisions are both simplified and
bounded. The sequence of decision-making only requires that one decide on the im-
mediate project, user story, or feature to develop next and not concern oneself with
the order of deferred activities. Sort the features into just two categories: what to do
“now” versus “not now.” Those features that are not done “now” will then be reevalu-
ated for the next iteration when there is more knowledge upon which to base the
evaluation. This is sequential planning where the “plan” is in the process and not the
result. Without it, there is no agility in agile processes.

It should be noted that this guideline is consistent with and supports the agile pref-
erence for short iterations. While it is often useful to have a loosely-defined release
plan covering the likely set of features to be delivered over the course of a small num-
ber of months, the detailed work of prioritizing and sequencing features should only
be done an iteration at a time.

4 Implications

In this final section we consider an example of how these guidelines can be applied to
the practical decisions of a project. These guidelines are presented to clients in both
training classes and in consulting discussions. We have found it best to tell clients to
perform a rough, initial prioritization of the desired features based on the nebulous
“business value” provided by each. We stress that it is not necessary to prioritize all
remaining features and normally guide product managers to plan two or three times as
much as they expect the team to be able to complete in a single iteration. For these
items product managers are given the guidance to think of expected cost of change
and knowledge generated as “sliders” that can move a feature ahead or backward
within the prioritization. Product managers then review the selected features sliding

 Incorporating Learning and Expected Cost of Change in Prioritizing Features 179

them forward and back based on considerations of expected cost of change and ex-
pected knowledge generated.

Following this process, we find that features with architectural implications that
will not have exceptionally high expected costs of change but that will increase
knowledge dramatically can justifiably be developed in an earlier iteration than would
be justified by prioritization solely on business value. We have applied the guidelines
in this way to support the early selection of a particular application server. We have
also used this on projects to justify the higher prioritization of features that influenced
design approaches for a security framework as well as internationalization and local-
ization. Similarly, when applied in this way, the guidelines can support the earlier
development of features that generate significant learning about the main metaphors
of the user experience being designed.

On the other hand, features with a high expected cost of change that will provide
little new knowledge, should be deferred. By deferring such features we put their
design off to the point where our knowledge about the product and system has in-
creased and to where we can presumably make better decisions about those features
with an initially high expected cost of change. Further, since developing these fea-
tures would not provide significant new knowledge to the product manager or team,
we are able to defer these features while foregoing no opportunities to learn. We have
applied the guidelines in this way to a project struggling to choose between three
competing client technologies. This decision was deferred while maximizing the
team’s learning through the development of other features.

Through the application of these guidelines on commercial projects we are able to
provide more guidance to agile product managers than the conventional “prioritize
based on business value.” We have found that instructing them to consider relative
changes in the cost of change and, more importantly, the amount of knowledge gener-
ated by the development of a feature leads to better decisions. Most importantly, the
guideline-based approach described here requires very little effort and allows
the product manager to make easier decisions such as “what one thing should be
done next” rather than the harder “what is the full set of priorities.” This more itera-
tive approach to prioritization acknowledges that learning occurs throughout a devel-
opment project and is more consistent with the agile management of software
development projects.

References

1. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall, Upper
Saddle River, NJ (2001).

2. Beck, K.: Extreme Programming Explained: Embrace change. Addison-Wesley, Upper
Saddle River, NJ (1999).

3. Palmer, S.R., Felsing, J.M.: A Practical Guide to Feature-Driven Development. Addison-
Wesley, Upper Saddle River, NJ (2002).

4. Stapleton, J.: DSDM: Business-Focused Development, 2nd edn. Pearson Education, Upper
Saddle River, NJ (2003).

5. Cohn, M.: User Stories Applied for Agile Software Development. Addison-Wesley, Upper
Saddle River, NJ (2004).

6. Poppendieck, T.: The Agile Customer’s Toolkit at www.poppendieck.com.

180 R.S. Harris and M. Cohn

7. Andrea, J.: An Agile Request For Proposal (RFP) Process. Proceedings of the Agile De-
velopment Conference, Salt Lake City, UT (2003) 152–161.

8. Augustine, S.: Great COTS! Implementing Packaged Software With Agility. Presentation
at Agile Development Conference, Sydney, Australia (2004).

9. Harris, R.S., Cohn, M.: The Role of Learning and Expected Cost of Change in Prioritizing
Features on Agile Projects, Ms (2006). Available at www.moutaingoatsoftware.com.

10. Hayak, F.A.: The Use of Knowledge in Society. American Economic Review, Vol.
XXXV, No. 4 (Sept. 1945) 519–530.

11. Jensen, M.C., Meckling, W.H., Baker, G.P., Wruck, K.H.: Coordination, Control, and the
Management of Organizations: Course Notes. Harvard Business School Working Paper
#98-098 (October 17, 1999).

12. Jensen, M.C., Meckling, W.H.: Specific and General Knowledge, and Organizational
Structure. In Werin, L., Wijkander, H. (eds.): Contract Economics. Blackwell, Oxford
(1992). Also published in Journal of Applied Corporate Finance (Fall 1995) and Jensen,
M.C.: Foundations of Organizational Strategy. Harvard University Press, Boston (1998).

13. Schuler, D., Namioka, A. (eds.): Participatory Design: Principles and practice. Erlbaum,
Hillsdale, NJ (1993).

14. Constantine, L.L., Lockwood, L.A.D.: Software for Use. Addison-Wesley, Reading, MA
(1999).

15. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. IEEE Soft-
ware, Vol. 14, no. 5 (1997) 67–74.

16. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980).
17. Karlsson, J., Wohlin, C., Regnell, B.: An Evaluation of Methods for Prioritizing Software

Requirements. Journal of Information and Software Technology, Vol. 39, No. 14–15
(1998) 939-947.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 181 – 185, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automatic Changes Propagation

Maciej Dorsz

Projekty Bankowe Polsoft Sp. z o.o,
60-965 Pozna , Poland

maciej.dorsz@pbpolsoft.com.pl

Abstract. This article presents the Automatic Changes Propagation tool, which
is used in one of Polish software companies. This system tries to solve the
problem of introducing changes in deployed system versions when an error in
the head version is found. The tool was created to speed the process of changes
propagation for the application used in more than 12 Polish financial institu-
tions. Unfortunately, the customers have different system versions and therefore
it is not enough to correct only the newest one. Because the manual changes are
time-consuming, monotonous and error-prone the automatic way is very de-
sired. Moreover, the Automatic Changes Propagation tool prepares the applica-
tion patches which are ready for deployment.

1 Introduction

About two years ago one of the Polish software company applications was deployed
in more than 12 financial institutions. In this article it will be named: AMLPortal
(Anti Money Laundering Portal). Unfortunately, almost all of the customers have got
different versions of the application. Moreover, some of them have live and test envi-
ronments. Therefore, the team developing this product had to organize CVS naming
conventions to be able to manage each client’s version [1]. Then Ant script was added
to generate a ready to deploy application [2]. The product is written in Java, therefore
Ant script simply generates .war file. With time, the problem of introducing changes
in previous, but still used versions, appeared.

The problem of introducing changes will be shown on the example. Considering
the case that one of the clients has 100 version, the second one 110 version and the
third one 120 version of AMLPortal. Then, the testers find the error in the head ver-
sion [2]. The product manager asks the programmers to correct the error. But, it
means making the changes in the head version, and creating patches for: 100, 110 and
120 versions. In this example, the programmers have to implement the change in four
system versions. But, as it was mentioned before, the system was sold to more than
12 clients…

Usually, the correction in all system versions is identical. Therefore, the program-
mers have to implement it in one of the versions and subsequently copy it to the oth-
ers, and next, generate improved versions/patches. Such a task is quite monotonous,
unnecessarily time-consuming and error-prone. After preparing the correction in one
system version, the programmers have to retrieve the next one, find changed files,

182 M. Dorsz

copy changes, build version, commit modifications, tag the versions and use Ant to
create the patch. All the time, there is a risk that a programmer will postpone intro-
ducing the changes in system versions, and in fact he/she will forget about it. There-
fore, a simple application for automatic changes propagation was proposed.

2 Automatic Changes Propagation

The Automatic Changes Propagation tool (ACP tool) makes a list of differences be-
tween two tags from CVS repository. Then ACP tool copies the changes, compiles
versions, commits the changes and generates patches. In Fig. 1 the diagram outlining
the process of automatic changes propagation is presented.

Stop

Checkout previous and current versions

Create differences list

Checkout version (for auto. changes propag.)

Copy changes

Compile version

Commit version

Tag version

Prepare patch

Start

Create branch (if needed)

Show result

Fig. 1. The diagram outlining the process of automatic changes propagation

2.1 Marking the Current State

The computer scientist willing to introduce the change in order to correct the founded
error has to tag the current system version.

 Automatic Changes Propagation 183

2.2 Introducing the Correction

Next step, a computer scientist is obliged to comment the changed lines of code by his
identifier and date or to mark the blocks of code with start and end pseudo tags. The
last stage is to compile and test the code. If necessary changes to jUnit [3] tests should
be added. Then the commit is done.

Unfortunately, to use 1.0 ACP tool version the programmer has to mark changed
lines of code, Currently ASP tool is undergoing improvements in order to be able to
recognize changes introduced by the programmer between system versions. It should
be based on data stored in CVS repository without the necessity of commenting lines
or blocks.

2.3 Using Automatic Changes Propagation Tool

The last, but not least stage, is to use ACP tool. The programmer sets system proper-
ties shown in Table 1.

Table 1. Some of the ACP properties

Property name Value Comment
previous_tag
current_tag
patches_tags

change_key
commit_comment

125
126
100,110,120

MD_010106
validation

#designates the system version with an error
#designates the corrected version
#versions, to which the correction should be

propagated and patches created
#change identification key
#commit comment for ACP automatic

commits
(…)

Then the programmer runs ACP. ACP uses the CVS checkout command to obtain
the versions marked with previous_tag and current_tag. Next, ACP supported by cvs
diff creates the list of differences between those two versions. Finally, the program-
mer differences are filtered with change_key parameter. The differences are also
stored in temp file named: differences_file.txt.

The next stage concerns retrieving subsequent system versions, as given in
patches_tags parameter. For each version CVS command checkout is used. Next,
ACP tool propagates changes by placing them according to differences list. In the
end, ACP uses Ant script to compile created version. If the build result is ‘success’
the branch for the version is created and the changed files are commited to that
branch. Then, the Ant script is used to generate .war file and patch is ready for
deployment. If the build result is ‘failed’ the changes are not commited and the
programmer must introduce changes manually. It may happen if the versions are too
much different. Fig. 2 shows the example of the possible positive propagation
results.

184 M. Dorsz

Fig. 2. The CVS result of the usage of Automatic Changes Propagation tool

It should be stated that for AMLPortal patch means the whole system version, but
the patch is created in order to correct errors. Therefore, changes in patches are usu-
ally small, though patches are whole .war files.

3 ASP in Practice

The Automatic Changes Propagation tool can be used for the propagation of changes
in one line of code, or the changes of one line into a block or a block into one line.
Moreover, a number of changes may be introduced in one file. However, ASP can
propagate the change only when it is unambiguous. It means that if there are two lines
in one file which are equal, and one of the was modified by the programmer, the
change won’t be introduced automatically.

ASP tool is used only in one of Polish companies, whether it will be an Open
Source application has not been decided yet. It would be not difficult to adapt ASP to
another environments. To use it one needs CVS repository, clearly defined subsequent
version tag conventions and Ant script to compile and generate versions.

The ASP tool can be used to propagate changes: the changes connected with errors,
but also ones related to new functionality or source file documentation. In AMLPortal
there is one head version, and new functionality is added only to it. However, in sys-
tems developed in many branches ASP tool could help to propagate new functionality
changes automatically.

4 Summary

This article presents ACP tool, which allows one to automatically propagate changes.
The changes are created on the basis of two different versions. Next, after checking
that the compilation process goes smoothly, branches and patches are created.

Automatic Changes

Propagation result

 Automatic Changes Propagation 185

The next development phase for ACP tool means the development of GUI side as
well as improving the algorithm for propagating changes. Moreover, ASP should be
able to create differences list on the data stored in CVS and to free the computer sci-
entists from adding comments to all changed lines or blocks of code. Moreover, the
better mechanism for coping changes is being considered.

Acknowledgment

The work has been supported by the Rector of Poznan University of Technology as a
research grant BW/91-429.

References

1. http://www.nongnu.org/cvs/
2. http://ant.apache.org/
3. http://junit.sourceforge.net/

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 186 – 190, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Making Fit / FitNesse Appropriate for
Biomedical Engineering Research

Jingwen Chen1, Michael Smith1, Adam Geras1,2, and James Miller3

1 Electrical and Computer Engineering, University of Calgary,
Calgary, Alberta, Canada T2N 1N4

{JinChen, SmithMR}@ucalgary.ca
2 Ideca, Calgary, Alberta, Canada
AGeras@ucalgary.ca

3 Electrical and Computer Engineering, University of Alberta,
Edmonton, Alberta, Canada T6G 2V4

JM@ece.ualberta.ca

Abstract. A prototype test driven development tool for embedded systems has
been developed with hardware-oriented extensions to CPPUnitLite. However
xUnit tests are written in the language of the solution; problematic in the devel-
opment of biomedical instruments as the customer, the “doctor”, does not have
“extensive knowledge of the domain”. The biomedical application is often pro-
totyped within MATLAB before movement down to the “plumbing level” on a
high-speed, highly parallel, processor to meet the requirement for real-time ap-
plication in a safe and secure manner “in the surgical theatre” or “on the ward”.
A long term research goal is an investigation of how to gain, as with standard
business desktop system, the full advantage of using Fit and FitNesse as com-
munication tools under these circumstances. We demonstrate the practical ap-
plication of using indirection to permit a single set of Fit tests for both
MATLAB and embedded system verification for a biomedical instrument.

1 Introduction

Imagine you are developing in a biomedical engineering environment where a
reliable, high performance, medical instrument must be produced “for the surgical
theatre” or “on the ward”! Signal processing algorithms will be needed to monitor,
analyze and report on patient life signs. You know that some of the required algo-
rithms have already been developed in a research laboratory (using MATLAB). These
algorithms need to be migrated to, and then validated on, an embedded platform using
a combination of C++ and assembly code in order to meet strict time constraints.

Even in such an environment, you will still want to undertake unit testing, but now
the “testing requirements” differ significantly from the standard “desktop” business
problem. There have been a number of notable efforts in migrating Agile ideas into
the embedded environment [e.g. 1]. However using xUnit embedded tools, such as
E-TDDunit [2], to support Agile development is problematic in a biomedical engi-
neering environment. The xUnit concept, by design, requires tests written in the lan-
guage of the solution. But now this language involves MATLAB, C++ and assembly

 Making Fit / FitNesse Appropriate for Biomedical Engineering Research 187

code. However the exploration of medical instrument development is more than just a
question of unit tests since, as with the standard business customer, the bio-medical
engineering customer (the “doctor”) just does not have that sort of experience level in
assist in product development at such a level.

Our long term research direction is to explore how to take full advantage of the Ag-
ile Fit [3] and FitNesse [4] concepts in a biomedical engineering research environ-
ment where the tables may include combinations of image comparisons, timing
diagrams, image processing algorithm and data mining results together with textual
information from physicians and other medical experts. However, a key short term
goal is to demonstrate a practical approach to allow a single suite of such Fit tests to
be used by “doctor” customer validation of work of the original MATLAB develop-
ment code and the commercialization of such code on the medical instrument (em-
bedded system). This paper details our experiences with taking the theoretical concept
of using Fit simultaneously in two different development environments and demon-
strates the practicality and limitations of such an approach.

2 Fit and FitNesse in a Biomedical Engineering Environment

Our long term goal is to analyze (in real-time) a series of images coming from a mag-
netic resonance imaging scanner used to determine cerebral perfusion parameters
(blood flow) for patients suffering from stroke. Stroke is a major disabler and killer
across the world; and its financial impact is staggering. Algorithms from such a study
involve deconvolution, signal aliasing problems and modeling techniques, with every-
thing running at full speed on highly parallel processors; involving issues beyond the
scope of a five page report. We will therefore, for illustrative purposes, choose a
greatly simplified device to illustrate some of the issues that must be overcome of
communicating using Fit when product development occurring in MATLAB, C++ and
assembly code.

Assume that the biomedical application requires the determination of the tempera-
ture of a doctor’s stethoscope. Cold stethoscopes are a common complaint received
from patients! The basic hardware involves using a TMP03 thermal sensor [5] which
produces a voltage pulse (voltWidth) whose width is proportional to temperature.
Conversion from pulse width to actual temperature is to be performed using a func-
tion (CalculateTemperature()) running on an embedded system powered by a Black-
Fin (ADSP-BF533) processor using the VDK real-time operating system [5].

Fig.1 provides an overview of the biomedical Fit / FitNesse test and development
system. The customer tests are described through tables stored on a Wiki-page. The
Runner takes the test data and fixture name, and passes these to the FitServer for
execution. Customized fixtures are available to use the MATLAB API to start and run
the MATLAB engine to validate the MATLAB code associated with the code (Con-
vertTemperature.m). Additional customized fixtures are available for running the
code on the embedded platform from the host computer. For this example, this re-
quired the development of fixtures to use the Visual DSP development environment
(VDSP IDDE) [6] to compile code, download and run that code (ConvertTempera-
ture.dxe) on the embedded platform over a communication link.

188 J. Chen et al.

 HOST MACHINE

FitNesse
Web server
Wiki editor
and storage

Runner Fit
server

Fixture for
Test case

DSP Interface class

TARGET PLATFORM

MATLAB API

MATLAB
ENGINE

 VisualDSP++ API
VisualDSP++ Environment

Fig. 1. Block diagram of a test environment demonstrating how Fit fixtures can be used to run
customer tests in both the MATLAB environment and on an external embedded target platform

3 Using Fit Within a Biomedical Research Development
 Environment

There are a number of stages the developer must work through to use the proposed Fit
approach to designing, developing and testing a biomedical engineering product.

1. Consulting with the customer to produce Fit test tables as part of development
specification.

2. Developing standard fixtures to use the test data from the test tables.
3. Validating the linkage between the code under test and Fit through a method

stub running in the same environment as Fit / Fitnesse.
4. Extending the method stub to use the MATLAB API to pass the test table data

to the MATLAB development environment.
5. In MATLAB, developing the code to meet the tests.
6. Extending the method stub to use the embedded development environment’s

API to pass the test table data (over a communications link) to the external
device.

7. This is combined with using the MATLAB code as a template to develop the
necessary C++ and assembly code to pass the known functional tests, and any
additional non-functional tests. Key test validation issue – double precision
floats MATLAB variables become fixed length integer for speed on the em-
bedded system.

Stage 1: Assume that the developer and customer have worked together to provide a
two column test table (DSPFixture.CalculateTemperatureTestFixture) that will be
used to validate the function ConvertTemperature(). The columns are voltWidth,
detailing input values from the temperature device, and Temperature, the expected
results.

 Making Fit / FitNesse Appropriate for Biomedical Engineering Research 189

Stage 2: Standard fixture components can be used for all three platforms
#include “necessary_Fit_includes.h”
class CalculateTemperatureTestFixture: public ColumnFixture {
// Make voltWidth variable and outputTemperature() function known to Fitserver
 public: explicit CalculateTemperatureTestFixture (void){
 PUBLISH(CalculateTemperatureTestFixture, unsigned, voltWidth);
 PUBLISH(CalculateTemperatureTestFixture, float, outputTemperature);
 }
 private: unsigned voltWidth;

 float outputTemperature (void){ // Call the function to calculate temperature
 return(CalculateTemperature (voltWidth));

 }
};

Stage 3: Validation of the fixture code through a method stub
float CalculateTemperature (unsigned voltWidth){
 // Necessary code to simulate calculation of temperature using voltWidth
 return dummy_temperature;
}

Stage 4: Extending the method stub to activate the MATLAB Engine requires a series
of calls through the MATLAB API to first activate, then to transfer data to global data
within the MATLAB environment, run the code and finally retrieve the result.
#include “API_interface.h” // API Environment
float CalculateTemperature (unsigned voltWidth) {
// Create an API application project, then build the code.
 API_Interface API
 API.CreateADSPApplicationProject ();
 API.BuildAndLoadProgram ();
// Transfer voltWidth value. Use a communication link on embedded system
 API.PUBLISH (voltWidth,"API_voltWidth");
 API.RunProgram (); // Run the code
// Read (transfer) the test result (From embedded platform back over the COM link)
 float outputTemperature = API.PUBLISH ("API_Temperature");
 return outputTemperature;
}

Stage 5: The reader is referred to [6] for a comprehensive example of developing
MATLAB algorithms for an assisted hearing device using Fit.

Stages 6 and 7: Extending the method stub to activate the embedded platform is
equivalent to Stage 4 except this stage uses the VDSP embedded API rather than the
MATLAB API. The communication between the fixture (on the host machine) and the
external embedded platform (Blackfin ADSP-BF533) is through global variables.

 .byte4 _Embed_voltWidth, _Embed_Temperature; // global variables changed by Fit
_main: // PUBLISHed over COM link

190 J. Chen et al.

 // Pass global variable as a parameter to CalculateTemperature()
 P0.L = lo(_Embed_voltWidth); P0.H = hi(_Embed_voltWidth);
 R0 = [P0];
 CALL _CalculateTemperature; // Perform required function
 // Prepare result from Calculate Temperature() for Fit access over COM link
 P0.L = lo(_Embed_Temperature); P0.H = hi(_Embed_Temperature);
 [P0] = R0;
 RTS;

4 Discussion and Conclusion

We have demonstrated a working Agile tool with Fit fixtures modifications that per-
mit one set of Fit tables, constructed by the biomedical customer and technical devel-
oper, to be used to test both MATLAB developed code and commercialized embedded
code. However based on this initial experience, many driver extensions are needed to
make the approach practical. The development of customized column fixtures is one
possible solution. An alternative is to take a different approach where, instead of di-
rect interfacing of Fit and FitNesse into these environments, fixtures are developed to
allow use of the xUnit tools MATLABUnit [e.g. 7] and E-TDDUnit [2]. Financial
support was provided by University of Calgary, Analog Devices and the Natural Sci-
ences and Engineering Council of Canada through a Collaborative Research and De-
velopment grant. MRS is Analog Devices University Ambassador.

References

1. Van Schooenderwoert, N., Morsicato, R.: Taming the Embedded Tiger – Agile Test Tech-
niques for Embedded Software, Agile Development Conference (2004) 120 – 126.

2. Smith, M, Kwan, A., Martin, A., Miller, J.: E-TDD – Embedded Test Driven Development:
A Tool for Hardware-Software Co-design, 6th International Conference, XP 2005, Shef-
field, UK (2005) 145 – 153.

3. Ward Cunningham:Fit: Framework for Integrated Test (2002):
fit.c2.com/wiki.cgi?FrameworkHistory (Accessed, January, 2006).

4. FitNesse: http://fitnesse.org/FitNesse.UserGuide (Accessed, January, 2006).
5. Analog Devices: www.analog.com/processors (Accessed January 2006).
6. Geras, A.: Fit and MatLab http://www.ucalgary.ca/~ageras/testml/ (Accessed, January

2006)
7. Dohmke, T. mlUnit, thomas.dohmke.de/en/projects/mlunit (Accessed November, 2005)

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 191 – 195, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Sprint Driven Development: Agile Methodologies in a
Distributed Open Source Project (PyPy)

Beatrice Düring

Change Maker, Järntorget 3, 413 04, Gothenburg, Sweden
bea@changemaker.nu

Abstract. This paper describes the practices created, adopted and evolved in a
Distributed Open Source Project (PyPy) project. PyPy is a hybrid project,
combining the different aspects of Agile and Distributed Development within
the context of an Open Source community. The project is partially funded by
the European Commission through the 6th Framework Program. Influences and
adoptions of techniques such as "sprinting" has been a core balancing act for the
project since its inception. “Sprints” in the Python community differs from the
Scrum version of sprints and in this paper we will present how this evolved
agile method acts as a primary method of quality assuring the aspects of
distributed and dispersed work style of the PyPy project and insures an ongoing
interaction with the Open Source aspects of the project.

1 Introduction

There are different methodologies and practices in use in PyPy – such as Agile and
Distributed development, F/OSS culture and the management practices in use in EU-
projects in the 6th Framework Program. It should be noted that most of the techniques
in use in the PyPy project evolved into practice inspired by success stories from other
projects in the F/OSS community and "word-by-mouth". It has rarely been the case
that methodologies have been researched and applied through formalized decision
procedures in the PyPy project. Rather the approach has been that of trial and error
and customizing certain practices to fit the needs of the project when actual need
arose.

PyPy has the goal of implementing a highly flexible and fast Python implementa-
tion written in Python. The project received EU-funding 1 December 2004 and will
continue for two years. The partial funded part of the project concists of 14 work
packages and 58 deliverables. A consortium of 8 partners was constructed to fullfil
the contract (for more information about the project, see http://codespeak. net/pypy,
www.pypy.org).

2 Agile Influences

Within the Agile development portfolio there are a multitude of techniques, tracing
it´s roots to the software experiences of the 70´s and 80´s. During the late 90´s the
first agile development methodologies were published such as eXtreme Programming,

192 B. Düring

Crystal and others and the collaboration between the instigators and authors resulted
in the Agile Manifesto, published 2001.

The values stated in the Agile Manifesto (2001), stating the following central traits
for Agile Development:

* Individuals and interactions over processes and tools
* Working software over comprehensive documentation
* Customer collaboration over contract negotiation
* Responding to change over following a plan

Research on two established Agile Development Methodologies, eXtreme
Programming and Scrum shows large similarities between practices used in PyPy and
practices advocated in these methodologies, although there are also crucial differences
based on the unique environment of the PyPy project.

In Scrum the following similarities can be found with the PyPy project regarding
practices and processes - the key one being "sprints" [1]. Although none of the roles
in Scrum or documentation such as Product Backlog and Sprint Backlog are imple-
mented in PyPy sprints. (see more on this in Section 3. Sprint Driven Development).

In eXtreme programming the following practices can be found which are also
employed in the PyPy project:

∗ simple design
∗ testing
∗ refactoring
∗ pair programming
∗ collective ownership
∗ continuous integration
∗ coding standard
∗ just rules

The PyPy project has been "test-driven" from the very start and it has employed
automated test suites for language compliance tests (Python) and unit tests. This test
framework together with an extensive "coding style" guide (covering style of code,
style of tests, naming conventions etc) and version control support (Subversion)
created the platform that allows for continuous integration into the code base. During
sprints “pair programming" is used systematically - not only between core developers
sharing an interest in a specific task but also for mentoring newcomers by pairing
them with core developers.

The aspects of "simple design" can be found within the Python community (Zen of
Python) as well as being supported by the iterative approach being used within PyPy
(iterations from the end of one sprint until the end of the next sprint - ca 6 weeks).
Some PyPy-specific rules regarding design and testing such as focusing on rapidly
achieving functioning semantics and concepts and then, during refactoring focus more
on optimization of the working code.

As for the aspects of "collective ownership" and "just rules", the PyPy develop-
ment process is open for anyone who is interested in participating:

• The sprints are open for any developers interested in PyPy and Python
(although experience as well as costs could be limiting factors).

 Sprint Driven Development 193

• The automated framework for testing and version controls allows for a more
relaxed approach regarding distributing commit rights to newcomers.

• The open and transparent communication in the development process (on line
via mailing lists and IRC as well as during sprints)

• The accessability of the core developers for answering questions and mentoring
(on line via mailing lists and IRC as well as during sprints)

• The weekly synchronization meetings via IRC, open for all interested develo-
pers to participate

• The documentation and tutorials available on line

These are all key factors, creating and maintaining an atmosphere of "collective
ownership". This has also been crucial for evolving the community of PyPy from a
few core developers to almost 350 subscribers to the development list as well as
increasing the amount of developers with commit rights to access and make changes
to the code base from a few core developers to almost 50 people (during the period of
2003 to 2006).

Some of the practices in eXtreme programming have created challenges in the
PyPy development environment:

∗ small/short releases
∗ 40 hour week
∗ on site customer
∗ open workspace
∗ pair programming

The shared denominator regarding these challenges is that they in most cases are tied
to the fact that PyPy is working distributed/dispersed as well as agile. During sprints
the work style is both developer-driven, self organized as well as collaborative (pair
programming and open workplace). Between sprints this process remains developer
driven and self organized but the open workspace shifts into virtual workspaces.

If the community can be viewed as the actual customers (developers interested in a
flexible and fast Python implementation, written in Python) then there is constant
communication regarding prioritized functionality in current iterations and upcoming
ones (both during sprints and in between sprints – on line). Due to both the
community interaction as well as the continuous integration of code (as it is being
written) there have only been 3 major releases in the PyPy project during the period
February 2003 and October 2005.

The reason for having larger releases and so few during this period was that PyPy
is a language implementation project (not application level) and this created the need
to reach a "stable" platform (release 0.6, May 2005). After this was achieved two
more releases followed quickly (release 0.7 August 2005.

Aspects such as process terminology found in eXtreme Programming are not used
in the PyPy project (planning game and metaphors) as well as the phases and roles
specific to XP.

A open question regarding the comparison of practices in eXtreme Programming
and those employed in the PyPy project is the reference to Kent Beck´s focus on
teams being situated physically close in order to facilitate understanding and
communication. This is an non-negotiable core aspect of XP, although Beck himself

194 B. Düring

states that you might still be working geographically distributed and XP-style if it
concerns "two teams working on related project with limited interaction" [2].

In the case of PyPy this is made more complicated because not only are the core
developers working distributed, sometimes in pairs of two at the same location - they
are also working dispersed - as is the rest of the PyPy community. The main strategy
in PyPy to handle this challenge and risk to the development process is to sprint
systematically, using sprints not only for iteration purposes but also to provide an
accelerated and collaborative physical practice.

The question, whether this sprint driven approach in a distributed F/OSS team still
would be considered as being within the scope of eXtreme Programming, is an open
one and should be studied together with other aspects of hybrid practices evolving
around Agile, Distributed and F/OSS teams.

3 Sprint Driven Development

PyPy first started during a one-week meeting, a "sprint", held at Trillke-Gut in
Hildesheim February 2003. The sprint was inspired by practices used by other Python
projects such as Zope3. Originally the sprint methodology used in the Python
community grew from practices applied by the Zope Corporation. Their definition of
a sprint was: "two-day or three-day focused development session, in which
developers pair off together in a room and focus on building a particular subsystem"
[3]. Inspired by practices such as pair programming in eXtreme Programming sprints
were first used within the commercial work and later tried and used within the Open
Source context around Zope development. There seems to be no specific sources
relating the Zope/Python version of sprinting to the terminology used in Scrum,
signifying an iteration around a specific increment – lasting up to a month [4].

The Zope sprint approach focuses indeed on just writing code and has one
“formal” role tied to it – the role of the “coach”. The coach prepares the content of the
sprint and manages and tracks the work during the sprint. Tutorials are done during
the first day and the suggested limit of people is to be no more than 10 people
participating during a sprint.

The method evolved rapidly and sprints done in connection to conferences were
more “open” and tutorial oriented, as opposed to sprints were only experienced
developers in the Zope domain participated. Sprinting spread through the Python
community and today almost all Python projects in the Python Open Source
community sprint at least once every year.

Sprinting up to a week became the initial driving factor in developing the code
base and the community/people around PyPy. Sprints gave the opportunity to both
help, participate and influence the ideas within PyPy. PyPy sprints was then as now
a developer driven effort and the role of coaches are not in use in PyPy. Sprint
preparation and planning as well as the actual organizing rotated between the
developers, using their contacts and networks to identify locations and facilities to
sprint in to as low costs as possible for both travels and accommodation for the sprint
attendants. Already from the start the strategy to travel and sprint, visiting different
local communities and “recruiting” contribution was a conscious one – also for the
reason of “justly” distribute the load of travel costs in the developer community.

 Sprint Driven Development 195

Why did PyPy choose sprinting as a key technique in the beginning of the project?
It is a method that fits distributed teams well because it gets the team focused around
visible challenging goals while working collaboratively (pair-programming, status
meetings, discussions etc) as well as accelerated (short increments and tasks, "doing"
and testing instead of long startups of planning and requirement gathering). This
means that most of the time a sprint is a great way of getting results and getting new
people acquainted - a good method for dissemination of knowledge and learning
within the team.

References

[1] “Agile project management with Scrum”, Ken Schwaber, Microsoft Professional 2004
[2] “eXtreme programming explained”, Kent Beck, Cynthia Andres, 1999
[3] http://www.zopemag.com/Guides/miniGuide_ZopeSprinting.html
[4] “Agile project management with Scrum”, Ken Schwaber, Microsoft Professional 2004

Storytelling in Interaction: Agility in Practice

Johanna Hunt, Pablo Romero, and Judith Good

University of Sussex, UK

1 Author Summary

Johanna Hunt is a first year DPhil researcher and Associate Tutor at the Uni-
versity of Sussex, and a Research Assistant in Algorithms at the University of
Hertfordshire.

Her research is concerned with investigating the community of Agile Sys-
tems practitioners. She is particularly looking at notions of identity, boundary,
communication and space as demonstrable in conversational storytelling and
personal narratives from this practitioner-group.

2 Extended Abstract

One of the stated beliefs common to practitioners of all the agile methodologies
is that “the most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.”1 This view is pervasive
throughout Agile Systems techniques and approaches.

There is starting to be some interest and in-depth investigation into the nature
of programmer interaction and dialogue within the case of pair-programming
[2] as well as larger scale ethnographic studies of XP practice [10]. Although
interesting metaphoric features have already been found in the language of expert
software developers [12][8][7], more detailed qualitative analysis can also be made
into the nature of such communication.

Narrative analysis [9] is an in-depth qualitative analysis methodology, and
focuses on the ways in which people make and use stories to interpret the world.
Storytelling and its role for communicating social tacit knowledge and historical
and organisational identity is well recognised [4]. So far there are fairly few cases
where narrative analysis has been applied to Information Systems (an analysis
of these are given in Wagner [11]), but it is beginning to find popularity within
the information systems community as it has proved particularly useful when
considering tacit knowledge transfer and related communication issues, especially
during periods of organisational change [1][5].

Narratives are considered to be social products within specific contexts, and
an interpretive device through which people communicate knowledge and de-
fine their own identity. It is arguable that the most basic and prevalent form of
narrative arises as the product of ordinary conversation [6]. As Gregori-Signes
[3] points out “We tell stories to each other as a means of packaging experi-
ence in cognitively and effectively coherent ways, or [. . .] as a way to test the
1 http://agilemanifesto.org/principles.html

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 196–197, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Storytelling in Interaction: Agility in Practice 197

borderlines between the exceptional and the ordinary.” Conversational stories
are “negotiable and collaboratively developed between more than one speaker –
although one speaker usually has a predominant role.”

A pilot study, incorporating narrative interviews supported by observational
data, of a small software development company in the South of England has
recently been conducted. Preliminary analysis supports the view that this qual-
itative technique, when further applied to the community of Agile Systems de-
velopers, will provide potentially interesting results.

Acknowledgements

This work is being conducted in the Informatics Department at the University
of Sussex under the supervision of Pablo Romero and Judith Good.

References

1. Rosio Alvarez and Jacqueline Urla. Tell me a good story: Using narrative analysis
to examine information requirements interviews during an erp implementation.
The Data Base for Advances in Information Systems, 33(1):38–52, 2002.

2. S. Bryant. Double trouble: Mixing qualitative and quantitative methods in the
study of extreme programmers. In VL/HCC, pages 55–61, 2004.

3. Carmen Gregori-Signes. Conversational storytelling (website lecture notes
2004), 2005. Retrieved 10/11/2005, 2005, from the World Wide Web:
http://www.uv.es/g̃regoric/Clases/CA 2004/4b storyCA 04.doc.

4. Helena Karasti, Karen S. Baker, and Geoffrey C. Bowker. Ecological storytelling
and collaborative scientific activities. ACM SIGGROUP Bulletin, 23(2):29–30,
2002.

5. Charlotte Linde. Narrative and social tacit knowledge. Journal of Knowledge
Management, 5(2):160–170, 2001.

6. Elinor Ochs. Narrative. In Teun van Dijk, editor, Discourse as Structure and
Process, pages 185–207. Sage, London, 1997.

7. M. Petre. Team coordination through externalised mental imagery. International
Journal of Human-Computer Studies, 61(2):205–218, 2004.

8. Marian Petre and Alan F. Blackwell. Mental imagery in program design and
visual programming. International Journal of Human-Computer Studies, 51(1):7–
30, 1999.

9. C. Reissman. Narrative Analysis, volume 30 of Qualitative Research Methods. Sage,
London, 1993.

10. Helen Sharp and Hugh Robinson. An ethnographic study of xp practice. Empirical
Software Engineering, 9(4):353–375, 2004.

11. Erica L. Wagner. Interconnecting information systems narrative research: An end-
to-end approach for process-oriented field studies. Global and Organizational Dis-
course about Information Technology, pages 419–435, 2002.

12. Julian Weitzenfeld, Tom Reidl, Charles Chubb, and Jared Freeman. The use of
cross-domain language by expert software developers. Journal of Metaphor and
Symbolic Activity, 7(3-4):185–195, 1992.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 198 – 199, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards an Agile Process for Building Software
Product Lines

Richard F. Paige, Xiaochen Wang, Zoë R. Stephenson, and Phillip J. Brooke

Department of Computer Science, University of York, UK
xcwang1981@yahoo.co.uk, {paige, zoe}@cs.york.ac.uk

School of Computing, University of Teesside, UK
p.j.brooke@tees.ac.uk

Abstract. Software product lines are sets of software systems that share
common features. Product lines are built as if they were a family of products,
identifying those features that change and those that can be reused. There is an
evident incompatibility between the requirements of software product lines and
agile practices. We report on experiments that used Feature-Driven Develop-
ment to build software product lines, and describe the minor extensions that
were useful for developing software product lines.

Software product lines (SPL) [4] are collections of software systems that share a
common set of features. SPLs are an emerging software paradigm allowing for large-
scale reuse for companies, since software is built as if it were a family of products
rather than an individual product. A family is a set of products that have common
aspects and predicted variability [4]. Once an SPL has been developed, the process of
software development is one of tailoring and configuring a product line, rather than
building a product wholesale. Examples of products that have been considered as
SPLs include engine controllers, type managers, and anti-lock braking systems.
Noteworthy amongst many of these systems is their embedded nature.

SPL development is usually a time-consuming and extremely expensive process.
Key challenges include identifying features and variation points, capturing the
product line architecture, and managing the configuration process. Approaches used
for developing SPLs are typically architecture-based, particularly those for safety
critical systems such as aero-engine controllers [5]. Models are considered helpful to
assist in the feature identification process and in highlighting configurations.

Agile development methods, such as Feature-Driven Development (FDD) [3], have
evolved to meet a need for increased productivity, while dealing with challenges such
as changing requirements. SPL methods have evolved to increase productivity, ideally
via increased reuse. However, there is an apparent incompatibility between agile
practices, and what is needed to develop SPLs. In particular,

• The agile principle of emphasising simplicity, and implementing functionality that
satisfies the current instead of future requirements, goes against the requirement to
support different variation points and configurations in SPLs.

• The agile principle of delivering working software frequently contrasts with the
substantial up-front development time for an SPL in order to provide
infrastructure, which can thereafter be configured and deployed.

 Towards an Agile Process for Building Software Product Lines 199

Despite these apparent incompatibilities, we believe that the SPL development
process can benefit from agile development techniques. To evaluate this, we have
carried out several experiments in using an agile process to build a SPL [1]. Our
approach was to first assess existing agile processes to determine which might
provide suitable practices for identifying SPL features, configurations, and variation
points. We selected FDD because of its lightweight modelling capabilities, and
because it provided substantial guidance on identifying system features, something
that must also be done in SPL development. We then applied FDD directly to building
a microwave oven software product line. Variants of a microwave considered
included one with only a simple cooking facility, one with a weight sensor to gauge
temperature and cooking time, and one with built-in recipes.

We encountered two difficulties in applying FDD to building SPLs: integrating
SPL architecture design into FDD; and incorporating component development in
FDD. An architectural description is important for SPL development since it is a part
of the SPL core assets and is reused by product development. Architecture and
component development were integrated into FDD with minor extensions to the
overall process; architecture is considered incrementally, following [6], and SPL
variations are generated as a result of the agile refactoring practice.

As a result of this case study, we constructed an extension to FDD. Two new
phases were added: one for consideration of architecture (based on the Architectural
Tradeoff Method [2]) and one for SPL component design. An argument as to why this
remains an agile process is laid out in detail in [1], but a key point of note is that the
architectural and component models that are produced are the simplest and smallest
that help in identifying variation points in SPL development.

We then applied the revised process to a further case study - an e-commerce
system - in order to validate and further explore the approach. Our observations are
that an agile process like FDD, which explicitly considers features as first-class
artifacts in system development, is well-suited to SPL development, as long as
additional consideration of SPL architecture and SPL component design is added to
the approach. Full details of the case studies can be found in [1].

References

1. X. Wang. Towards an Agile Method for Building Software Product Lines, MSc Thesis,
University of York, UK, September 2005.

2. L. Bass et al. Software Architecture in Practice (2nd edition), AWL, 2003.
3. S. Palmer and J. Felsing. A Practical Guide to Feature-Driven Development, Prentice-Hall,

2002.
4. D. Weiss. Software Product Line Engineering, AWL, 1999.
5. Z.R. Stephenson. Change Management in Families of Safety Critical Systems, PhD Thesis,

University of York, UK, 2003.
6. H. Chivers, R.F. Paige, and X. Ge. Agile Security via an Incremental Security Architecture.

Proc. XP 2005, LNCS 3556, Springer-Verlag, June 2005.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 200 – 201, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Extending the Embedded System
E-TDDunit Test Driven Development Tool

for Development of a
Real Time Video Security System Prototype

Steven Daeninck1, Michael Smith2, James Miller3, and Linda Ko2

1 NovAtel Inc., Calgary, Alberta, Canada T2E 8S5
SRDaeninck@shaw.ca

2 Electrical and Computer Engineering, University of Calgary,
Calgary, Alberta, Canada T2N 1N4

SmithMR@ucalgary.ca
3 Electrical and Computer Engineering, University of Alberta,

Edmonton, Alberta, Canada T6G 2V4
JM@ece.ualberta.ca

Despite the existence of 75 “different” xUNIT frameworks, their domain of applica-
tion differs only in the programming language, compiler or operating system sup-
ported. If one is working in the embedded world, unit testing is still needed, but now
our “testing requirements” differ significantly from the testing framework needed for
the desktop world. Embedded systems often have significant non-functional require-
ments, which demand validation at the unit level. In addition, they interact intimately
with hardware resources and often have only very limited input/output capabilities –
imagine a xUNIT framework where printing to the screen is a technical challenge!

There have been a number of notable efforts in migrating Agile ideas into the em-
bedded environment but only one or two intrepid practitioners have braved this new
domain deep down towards and into the “plumbing” layer of small embedded sys-
tems. The purpose of this abstract is to demonstrate extensions of an embedded sys-
tem test driven development tool (E-TDDUnit [1]) to permit the development of a
real-time security system prototype (Fig. 1) around an Analog Devices ADSP-BF533
Blackfin Processor EZ-Kit Lite evaluation board. This initial solution and tests were
successfully ported to a newly available BF537 system (with both video and Internet
connection); demonstrating the practicality of the approach. E-TDDUnit is a custom-
ized CPPUnitLite version [2] adopted and modified so that the tests could run on the
real embedded system where the timing relationships were not just seen through a
simulated environment.

The code development for this project can be recognized as having two distinct
stages, commonly found in embedded applications involving video and telecommuni-
cations. An attempt to run the same set of E-TDDUnit tests for (1) the double preci-
sion floating-point MATLAB prototyping phase (develop and test signal processing
algorithms) and (2) a code migration phase, where the algorithm implementation must
meet the time and precision requirements of running on a fixed point processor, was
abandoned because of the impractical C++ / MATLAB interface.

 Extending the Embedded System E-TDDunit Test Driven Development Tool 201

One of the reasons for choosing a xUnit style of testing tool is that the tests and
code are written in the same language. This means that both tests and code can be run
on the target machine without the overhead of communications between the host and
target machines affecting the real-time performance of the target. However, this ad-
vantage has an associated disadvantage in that the tested code must fit into the em-
bedded system memory but still function at full speed along side the test code itself.
This means that a key element that distinguishes embedded system development from
desk top application development is memory – size, type and location: Level one (L1)
memory, connected directly to the processor core for extremely high speed; Level two
more bountiful than L1 memory but slower; and Level three off-chip memory which
is by comparison extremely slow. We will demonstrate in the poster how many of the
memory problems associated with gaining the advantages of using Agile methodolo-
gies with embedded systems can be overcome by such techniques as customizing the
macros for the standard CPPUnitLite test syntax for the embedded memory environ-
ment together with creative methods such as handling multiple heaps.

A key issue to handle were the testing of the many threads running on the system,
essentially one thread for each of the boxes shown in the schematic (Fig. 1). All these
threads, and the tests themselves, competed for the limited internal processor and
external hardware resources. In conclusion, it was found that automated testing is
possible for some of the real-time threads associated with the communications proto-
col used on the video-surveillance prototype. However, further extensions are needed
before E-TDDUnit can test the most generally described real-time thread operation
automatically.

Fig. 1. Real-time security system providing video surveillance and entry detection. Each block
essentially becomes a thread competing for internal and external resources.

References

[1] Smith, M, Kwan, A., Martin, A., Miller, J.: E-TDD – Embedded Test Driven Develop-
ment: A Tool for Hardware-Software Co-design, 6th International Conference, XP 2005,
Sheffield, UK (2005) 145 – 153.

[2] M. Feathers, “CppUnitLite Source code”, c2.com/cgi/wiki?CppUnitLite (Accessed Janu-
ary, 2006).

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 202 – 204, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Evaluation of Test Code Quality
with Aspect-Oriented Mutations

Bartosz Bogacki and Bartosz Walter

Institute of Computing Science, Pozna University of Technology, Poland
{Bartosz Bogacki, Bartosz.Walter}@cs.put.poznan.pl

1 Introduction

Along with growing popularity of agile methodologies and open source movement,
unit testing has become one of the core practices in modern software engineering. It is
particularly important in eXtreme Programming [1], which explicitly diminish the
importance of other artifacts than source code and tests cases. In XP unit test cases
not only verify if software meets functional requirements, but also enable refactoring,
alleviate comprehension and provide guidance on how the production code should be
used. Therefore, they contribute to many other important practices of XP, which
explicitly or implicitly rely on their ability to effectively discover bugs.

Mutation testing [2] is a technique used for verifying the quality of tests. It figures
out how the test cases actually react to faulty response received from deliberately
altered production code. High quality tests are expected to uncover any mutation of
the source code which makes it to behave even slightly differently. Such modified
code (called mutant) is killed when it causes at least one test case to fail.

Despite of its advantages, mutation testing has not been widely adopted by soft-
ware industry. The main drawback its high complexity: it usually includes multiple
phases of mutating source code, compilation and running the tests. Therefore, the
technique is in practice inapplicable for medium or large size systems.

In the paper we present a prototype tool for mutation testing, which employs
aspect-oriented programming (AOP) [3] to generate and execute mutants. It follows
the control of existing test cases and examines how they deal with the altered
production code, while significantly reducing time required to create and run mutants.

2 Architecture of Aspect-Oriented Mutants Generator

In traditional model of mutation testing, mutants are generated by arbitrary or directed
production code modifications, e.g. operator replacement, redefinition of a method
etc. The mutations are performed in separation in order to avoid possible cross-cutting
side effects. Depending on the scope of changes, they are or not externally visible to
test cases through altered results of method execution. To depict the above, let us
consider an exemplary source code presented at Fig. 1 and its test case at Fig. 2. Te
test will fail (kill mutant) if one of three conditions is met: (1) the return value of the
method Foo.bar() called with parameter 3 is different than 3000, or (2) an

 Evaluation of Test Code Quality with Aspect-Oriented Mutations 203

unexpected exception occurs, or (3) the parameter values 0 or 6 do not make the
method to throw an expected exception. However, the mutant cannot be discovered if
it does not affect the method outcome.

public class Foo {
 public int bar(int a)
 throws IllegalArgumentException {
 if ((a > 5) || (a < 1)) {
 throw new IllegalArgumentException();
 }
 int c = a;
 for (int i = 0; i < a; i++) {
 c *= 10;
 }
 return c;
 }
}

Fig. 1. Exemplary source code under test

public void testBar () {
 assertEquals (3000, new Foo().bar(3));
 try {
 new Foo().bar(6);
 fail ("Expected exception for value: 6");
 } catch (IllegalArgumentException e) {}
 try {
 new Foo ().bar(0);
 fail ("Expected exception for value: 0");
 } catch (IllegalArgumentException e) {}
}

Fig. 2. Exemplary JUnit test method for method bar() in class Foo

Hence, it seems sufficient to observe the reaction of test cases to such properties,
without tracking individual changes in the production code and expecting the
change to reveal with tests cases failures. In order to dynamically and non-invasi-
vely access the method results, we employed the capabilities of Aspect-Oriented
Programming. In the example (see Fig. 2) all calls to Foo.bar() could be cap-
tured on the fly by an aspect and their actual results (return value and/or exceptions)
would be replaced with mutants, just as if the mutation had been introduced directly
into the source code.

The proposed prototypic tool, which exploits this observation, is actually com-
posed of two collaborating aspects: MutantGenerator and MutantExecutor. The first
one follows the original flow of a test case and captures control at every method call.
In order to better mimic the normal program behavior, the aspect executes each test
case twice. First, it runs the original method and stores its results and context.
Secondly, it generates mutants of the results, applying typical testing rules, e.g. an
integer yields following mutants: 0, –value, value ± n, Integer.MIN_VALUE and
Integer.MAX_VALUE.

204 B. Bogacki and B. Walter

Subsequently, the other aspect, MutantExecutor, wraps test code execution and
runs each of the generated mutants. Its responsibility is to capture each call to the
tested method in a test case and replace it with subsequent executions of the mutants
generated by MutantGenerator. It also intercepts any exceptions that may be thrown,
preventing them from being propagated to the TestRunner, which could falsely
classify them as assertion failures.

It is important to notice that both aspects are core parts of the tool and do not need
to be created or compiled specifically for the production code to be mutated.

4 Conclusions

To evaluate this approach, we have built a prototype based on AspectJ [4] compiler to
build code and tests and with JUnit [5] as the testing library. Early experiments show
that it appears to generate and run the mutants a few orders of magnitude faster that
the popular Jester [6]. The savings result mainly from the fact that the tool does not
require multiple mutant compilations, reduces the number of equivalent and
transparent mutants, and preserves the syntactic correctness of the mutated code.
However, it differs from Jester in that it learns the code usage from existing test cases,
and then mutates the code. Jester, on the other hand, mutates the code insight into test
cases, which allows for assessing the code coverage, but also leads to redundant or
transparent mutants.

Currently the prototype deals only with primitive Java types and null values for
objects. In future, we plan to employ an on-fly object creation with dynamic proxies
and implement other mutation operators as well as perform a larger scale evaluation.

Acknowledgements

The work has been supported by the Rector of Pozna University of Technology as a
research grant BW/91-429.

References

1. Beck K.: Extreme Programming Explained. Embrace change. Addison-Wesley, 2000.
2. Hamlet R.G.: Testing programs with the aid of compiler. IEEE Transactions on Software

Engineering, Vol. 3(4), July 1978, pp.279-290.
3. Kiczales G., Lamping J. et al.: Aspect Oriented Programming. In: Proceedings of ECOOP

1997, Lecture Notes in Computer Science 1241, Springer Verlag, pp. 220-242.
4. AspectJ Project HomePage, http://www.eclipse.org/aspectj/ (visited in January 2006).
5. JUnit homepage, http://www.junit.org (visited in January 2006).
6. Moore I.: Jester. A Junit test tester. In: Proceedings of the 2nd International Conference on

Extreme Programming and Flexible Processes in Software Engineering, XP2001.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 205 – 208, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Experimenting with Agile Practices – First Things First

Fergal Downey, Gerry Coleman, and Fergal McCaffery

Dundalk Institute of Technology, Department of Computing and Maths,
Dublin Road, Dundalk, Co. Louth, Ireland

fdown05@studentmail.dkit.ie, gerry.coleman@dkit.ie,
fergal.mccaffery@dkit.ie

Abstract. Faced with challenges in relation to interpretation of requirements,
issues with build and deployment and excessive integration defects, this paper
examines how a software team propose using a novel combination of Covey’s
‘First Things First’ principle and Cockburn’s Methodology Shaping, as a poten-
tial solution to examine their current process and define a new set of working
conventions which will address these issues.

Keywords: Methodology, software, agile, time-management.

1 Introduction

The software team involved in this research is part of a major UK bank and is respon-
sible for the development of eCommerce applications supporting mainly customer
servicing requirements identified by each of the bank’s business divisions. The team
was established in 2001 but has now grown to more than sixty people which include
one of the authors. The team has a strong focus on project delivery but no-one is as-
signed responsibility for process or methodology.

The company provides a set of Project Management Minimum Standards (PMMS)
which are used for project control and these standards are based on a traditional wa-
terfall approach to software development. The standards are generic so that they can
be used independently of technology or domain, but as a result are not specific
enough to be of real value.

A number of key issues are encountered to varying degrees on each of the projects
undertaken by the team as follows:

1.1 Requirements Not Fully Understood

The PMMS mandates the delivery of a Business Requirements Definition (BRD).
This must be signed off by the business expert and the project sponsor and as such
must be at a low level of precision, sufficient to define the proposed business value
and the application domain. A high precision Detailed BRD (DBRD) is subsequently
produced to enable technical specifications and designs to be delivered. This is writ-
ten as a set of detailed textual Use Cases and is accompanied by a “happy-path” pro-
totype, but the sheer volume of information (the most recent project had a DBRD of
almost 400 pages) and the Unified Modeling Language (UML) [1] format leads to the
business expert signing off a specification that they do not fully understand in order to
progress the project to the PMMS Delivery stage.

206 F. Downey, G. Coleman, and F. McCaffery

1.2 No Integration Until After Build Completion

In order to break up the project into manageable chunks for which developers can
take ownership, the project team is divided into User Interface (UI), Mid-Tier and Da-
tabase sub teams. Each use case is then assigned to someone from each sub team who
are then responsible for delivery of the end-to-end use case. This works to an extent,
but issues are encountered when there are multiple dependencies between use cases
and when these are being developed by different members of the sub teams. This
leads to excessive integration defects being encountered when all use cases are deliv-
ered as an entire application at the end of the Build phase.

1.3 Build and Deployment Issues

Build and deployment of the applications developed by the software team is complex
in nature due to the distributed high resilience eCommerce architecture along with the
requirement to integrate with secure authentication services and legacy systems. All
deployments must be automated with minimal manual intervention to ensure repeat-
ability through each of the numerous test environments as well as preventing unnec-
essary access to production servers in the interest of data privacy and security.
Scripting and configuration issues subsequently cause delays to the start of the formal
testing phase as a result of not attempting deployment of the application until after the
build has completed.

2 Methodology Shaping

The team has successfully delivered a number of large projects since its inception and
as such believes that they must be doing some things well and should continue with or
enhance these practices. The team also believes that some of the current practices are
not adding value and these should be discontinued. The latter however must be re-
viewed in the context of the entire development lifecycle to ensure that discontinuing
a design or build practice deemed not valuable does not have a detrimental impact on
testing, implementation of maintenance.

Having some experience of Post Implementation Reviews (PIR) which are man-
dated under PMMS, the team agreed that input from and discussion with all members
of the team was essential as well as consensus in relation to what are the most impor-
tant things to address. This is consistent with the Crystal Clear technique of Method-
ology Shaping as described by Cockburn [2].

Using the Methodology Shaping technique, the team proposes to gather informa-
tion about prior experiences of individuals and project teams. It will not be possible to
get the entire team in a single workshop, nor would this be the most effective ap-
proach, so it is proposed to use a combination of interviews and workshops with the
end result being two lists:

1) Disliked/Avoid – Practices that have been personally experienced by members
of the team on previous projects that they would not like to repeat on the cur-
rent or next project.

 Experimenting with Agile Practices – First Things First 207

2) Liked/Keep - Practices that have been personally experienced by members of
the team on previous projects that they would like to see repeated (and possi-
bly enhanced).

The items on both lists will then be weighed by all individuals within the team to in-
dicate the significance of each and the higher weighed items will be the areas to focus
on initially.

Compiling both lists will ensure that consideration is given to eliminating existing
practices which are not adding value instead of just enhancing existing or adding new
practices.

3 First Things First

The team looked at the output from previous PIRs and these all reported that the pro-
ject teams believed they could have done things better if only they had more time and
resources. Two possible solutions may be considered for this complaint. Firstly, make
allowances on the next project for more time and/or additional resources. Unfortu-
nately however, these commodities are in short supply due to increasing demand from
the bank’s business divisions and already challenging timelines for delivery of new
products or services to the bank’s customers. The second solution calls for an effec-
tive time management framework in order to make better use of the time that is avail-
able by ensuring that all activities and practices are adding value and are mutually
beneficial to all members of the project team.

Stephen Covey’s fourth generation time management discipline which he calls First
Things First (FTF) [3, 4] provides a matrix against which all activities and practices can
be reviewed. Covey says that FTF focuses on preserving and enhancing relationships and
on accomplishing results. This emphasis on people and evident results is consistent with
the key values outlined in the Agile Alliance Manifesto [5] and is therefore an ideal phi-
losophy to use alongside the practical approach of Methodology Shaping.

Fig. 1. Time Management Matrix

208 F. Downey, G. Coleman, and F. McCaffery

FTF separates activities that are performed into four quadrants as shown below in
Figure 1. Two factors define an activity. Urgent means it requires immediate atten-
tion, whereas Importance relates to results.

Quadrant one is the fire-fighting quadrant where things are urgent and important.
In the software development lifecycle, critical defects or issues with test environments
would fall into this quadrant.

Quadrant two contains activities which are important but not yet urgent. These
would include code reviews or end to end integration. There are no immediate conse-
quences of not performing these activities. However if not performed they will result
in the creation of urgent and important issues as outlined above.

Quadrant three activities are urgent, but not important. These activities are usually
part of someone else’s agenda and not aligned with the objectives of the current pro-
ject. An example may be unnecessary or irrelevant progress reporting.

Quadrant four activities are neither urgent nor important, such as spam emails or
meetings with no agenda or objectives, but nevertheless result in interruptions to the
important activities.

The key to effectively managing available time according to Covey, either on an
individual or team basis is to spend as much time as possible on Quadrant two activi-
ties. It is essential to firstly identify and eliminate the activities which are not impor-
tant (Quadrants 3 and 4), freeing up time for the important tasks (Quadrants 1 and 2).
Secondly important activities should be performed before they become urgent. There
will always be genuine crises and emergencies, but the emphasis is on being proactive
around the opportunities presented in Quadrant 2, thus reducing the time required in
Quadrant 1. For example, time spent on code reviews is likely to result in fewer de-
fects encountered during testing.

4 Current Status and Future Work

This is part of ongoing research looking at improving the software process used by
the team through experimenting with agile practices. The literature review is continu-
ing and the Methodology Shaping workshops have been scheduled to take place dur-
ing the next month. The output from the workshops will be presented in a future paper
and will also provide the starting point for refining the existing set of working
conventions.

References

1. Fowler, Martin, Scott Kendall: UML Distilled. Addison-Wesley (1997)
2. Cockburn, Alistair: Crystal Clear: A Human Methodology for Small Teams. Addison

Wesley, (1999)
3. Covey, Stephen: Seven Habits of Highly Effective People. Simon & Schuster, (1989)
4. Covey, Stephen: First Things First. Simon & Schuster, (1994)
5. http://www.agilealliance.org

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 209 – 210, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Test-Driven Development: Can It Work for Spreadsheet
Engineering?

Alan Rust, Brian Bishop, and Kevin McDaid

Department of Computing and Mathematics, Dundalk Institute of Technology,
Dundalk, Co. Louth, Ireland

alan.rust@dkit.ie, brian.bishop@dkit.ie, kevin.mcdaid@dkit.ie

Abstract. It is widely accepted that the absence of a structured approach to
spreadsheet engineering is a key factor in the high level of spreadsheet errors.
In this paper we propose and investigate the application of Test-Driven Devel-
opment to the creation of spreadsheets. Through a pair of case studies we dem-
onstrate that Test-Driven Development can be applied to the development of
spreadsheets. A supporting tool under development by the authors is also
documented along with proposed research to determine the effectiveness of the
methodology and the associated tool.

1 Introduction

End-user programming is the most common form of programming today [2] with
spreadsheets created using Commercial off-the-shelf packages the popular example.
The ubiquity of spreadsheet programs within all levels of management in the business
world means that important decisions are made based on the results of these, mainly
end-user developed, programs. Unfortunately, there is extensive empirical and anec-
dotal evidence that shows that the quality and reliability of spreadsheets is poor [4].

It is widely accepted that the absence of a structured approach to spreadsheet engi-
neering is a key factor in the high level of spreadsheet errors. Spreadsheets have been
referred to as the original agile development environment, and it has been argued that
agile methodologies may be better suited to end-user development than more tradi-
tional methodologies. We therefore propose the application of the software develop-
ment methodology, Test-Driven Development (TDD) [1], to spreadsheet engineering.

2 TDD and Spreadsheets

TDD is a coding technique that insists that the software developer writes the tests
before they write the code. TDD, supported by a dedicated tool, has been shown in
software engineering to improve the quality of code and to support the testing and
maintenance of software.

The importance of tool support for TDD cannot be overstated, as manually running
tests would increase project time substantially. In order to apply TDD to spreadsheet
engineering we have created a tool that mimics the functionality of established TDD
tools such as JUnit or VBUnit. Our tool differs from JUnit or VBUnit in that the

210 A. Rust, B. Bishop, and K. McDaid

developer is not required to write code when creating tests. Instead an interface allows
entry of input and output values that specify a test.

Before structured experiments designed to answer the key research question “Does
TDD reduce the level of spreadsheet errors?” can take place it is important to estab-
lish that TDD can be applied in the spreadsheet domain and to identify the associated
issues. An initial investigation comprising two case studies by two of the authors was
conducted to identify these issues.

Upon completion of the case studies, both authors felt that the methodology and
tool worked well and that there was an increased confidence in the reliability of the
spreadsheet following the adoption of the approach. In fact one of the authors felt that
were he to start again he would write an even higher number of tests for the spread-
sheet and that he would refactor a number of the formulas. The case studies also re-
vealed a number of key issues relating to the future improvement of the TDD tool.

3 Conclusions

This paper explores the potential of Test-Driven Development (TDD), a best-practice
in Extreme Programming, to improve the engineering of spreadsheets. Through two
case studies the authors have increased their understanding of TDD and how it can be
applied in the spreadsheet domain. Importantly, the authors have concluded that the
methodology has the potential to improve the development of spreadsheets. However,
the studies have revealed a number of issues with the tool and the methodology.
These issues are currently being addressed before trials involving real users can be
conducted to prove the effectiveness and efficiency of the innovative method.

Acknowledgments

The authors acknowledge the support of the Irish Research Council for Science, En-
gineering and Technology funded by the National Development Plan and the support
of Co-operation Ireland and the Peace 2 programme.

References

1. Beck, K.: Test Driven Development: By Example. Addison-Wesley (2003)
2. Burnett, M., Cook, C., Rothermel, G.: End User Software Engineering. Communications of

the ACM, September, Vol.47, No. 9 (2004)
3. Panko, R.: What We Know About Spreadsheet Errors. Journal of End User Computing 10, 2

(Spring), p15–21 (1998)

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 211 – 212, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Comparison Between Test Driven Development
and Waterfall Development in a Small-Scale Project

Lei Zhang1, Shunsuke Akifuji1, Katsumi Kawai2, and Tsuyoshi Morioka2

1 Hitachi (China) Research & Development Corporation, Beijing Fortune Bldg. 1701,
5 Dong San Huan Bei-Lu, Chao Yang District, Beijing 100004, China

{leizhang, sakifuji}@hitachi.cn
2 Hitachi, Ltd., Systems Development Laboratory, 292, Yoshida-cho, Totsuka-ku,

Yokohama-shi, Kanagawa-ken, 244-0817 Japan

{katsumi, morioka}@sdl.hitachi.co.jp

In order to popularize the Test Driven Development (TDD) practice in Chinese off-
shore companies, an experimental research was firstly conducted to compare TDD
with the traditional waterfall development in a small-scale project. Although the pro-
ject scale was small and all the subjects were students, this experiment was designed
very strictly to guarantee the reliable evaluation of the efficacy of TDD. Furthermore,
it is also the first time to evaluate the maintainability and the flexibility of TDD by
experiment.

This experiment was carefully designed to guarantee that except the development
flow, other factors had minimum effects on the experimental results.

(1) Subject: Eight students from five universities were divided into ‘T’ group and
‘C’ group. Each group had four members with similar programming and TDD
experiences.

(2) Task: Two groups were asked to develop the same project of ‘Working Atten-
dance Management System’ at the same time. The detailed Requirement
Specification and the GUI designed by the plotting tool were provided to en-
sure the workload of two groups as similar as possible.

(3) Development Environment and Tools: The development environment Eclipse
and the test tool JUnit were specified. In addition, the structure was designed
to be Client/Sever and the database was required to use MySQL.

(4) Working Space: Two groups worked in two different rooms in order to avoid
the communication between them.

(5) Development Flow: ‘T’ group and ‘C’ group were required to develop the
same project by TDD and the waterfall development, respectively. The devel-
opment flow of ‘T’ group was ‘simple design – test – code – refactor’ and that
of ‘C’ group was ‘simple design – detailed design – code – test’.

In order to comprehensively evaluate the efficacy of TDD, six parameters were esti-
mated by this experiment. The evaluation methods and the data collection processes
of these six parameters were stated as follows:

(1) Productivity: The productivity of each group was evaluated by the total devel-
oping time, which was recorded manually by each group every day.

212 L. Zhang et al.

(2) Reliability: The code reliability of each group was estimated by the total bug
number during the developing process, which included the bugs found by
other teammates and by the daily build at 19:00 every evening.

(3) Maintainability: The maintainability of each group was evaluated by the time
used to remove one bug. The shorter the time is, the better the maintainability
is. Some Java scripts were written based on an open source tool of Bugzilla to
calculate the time used to remove one bug.

(4) Flexibility: Several new functions were added during the developing process
and the flexibility of each group was estimated by the time used to adapt to
these requirement variations. The shorter time means the better flexibility.

(5) Efficiency: The efficiency of each group was evaluated by the code size writ-
ten to implement the same functions. The smaller code size represents the
higher efficiency. The code size of each group was recorded by a code-
counting tool every day.

(6) Tester quality: The tester quality of each group was estimated by the results of
the code coverage. An open source tool EMMA was used to calculate the code
coverage during the developing process.

This experiment was conducted from June to August in 2005. Based on the experi-
mental results, several conclusions were drawn as follows:

(1) The TDD developers took less time (10%) than the traditional developers.
This stated that the TDD approach had higher productivity.

(2) The TDD approach appeared to yield code with the superior reliability, maintain-
ability, flexibility and efficiency. The bugs found during the developing process
were 28% less than those of the traditional group. The average time used to re-
move one bug in the TDD group was 8% shorter than that of the traditional
group. The time used for the requirement variation of TDD was 30% shorter, and
the code size was 33% smaller than those of the traditional group, respectively.

(3) The test code coverage of the TDD approach was about 10% higher than that
of the traditional group.

All the above experimental results were summarized in the following table. It can be seen
that the TDD group performed better on all the evaluated aspects in this experiment.

Table 1. Summary of the experimental results

No. Evaluated Parameters
Superiority of TDD to Waterfall

(Shown by Percentage)

1 Productivity 10%

2 Reliability 28%

3 Maintainability 8%

4 Flexibility 30%

5 Efficiency 33%

6 Tester Quality 10%

In the near future, we will further study the efficacy of TDD in larger scale projects
and the effect of the programming experience of the subjects on the experimental results.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 213 – 214, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Practical Approach for Deploying Agile Methods

Minna Pikkarainen and Outi Salo

VTT Technical Research Centre of Finland, P.O. Box 1100, FIN-90571 Oulu, Finland
Minna.Pikkarainen@vtt.fi, Outi.Salo@vtt.fi

1 Introduction

Over the past years, a great number of organizations have started utilizing agile prin-
ciples and practices in their software development [1, 2]. Despite of the promising
experience reports, the deployment of agile practices is a challenging task which re-
quires adjustment and dedication from all the stakeholders involved in the develop-
ment process [3, 4]. In order to fit the agile practices into organization’s software
development context, agile specific guidelines and methods to support their selection,
deployment and tailoring are needed [5]. However, the existing software process
improvement (SPI) approaches have originally been targeted for the context of the
traditional software development thus lacking some central aspects such as iterative
process adaptation [5] and procedures for suitable organizational learning [6]. Agile
Assessment and Post-Iteration Workshops (PIWs) are technologies that can be used in
the deployment of agile software development methods.

2 Agile Deployment Process and Technologies

The agile deployment process proposed here combines Agile Assessment procedures
and iterative execution of process adaptation and deployment with PIWs. This pro-
vides an opportunity for rapid feedback loop from the project teams to organization.
At the moment, one method for assessing agile software development is an Agile
Assessment [7, 8]. The approach of Boehm and Turner [9] also provides a way for
assessing the agile home ground of a software development project. However, this
model maintains a strict focus on assessing the agile and plan-driven risks rather than
finding the weaknesses and strengths of the used practices. The new idea in the Agile
Assessment approach is to make the agile principles and practices a part of the as-
sessment process and to use the generated information for improving the software
development processes, utilizing agility-based solution alternatives.

The iterative process adaptation within agile project teams provides project teams
with a means of iterative tailoring the deployed practices during the ongoing project.
The PIW method (e.g., [10]) proposes a way to conduct this activity in a rapid yet
validated and systematic manner. Furthermore, the PIW method provides mechanisms
for organizations to harvest and utilize SPI feedback from process deployment in
projects to organizational learning [5, 6], e.g., in Agile Assessments.

Both Agile Assessments and PIWs have been successfully performed for several
projects in many organizations (e.g. Agile Assessment in 8 projects in Hantro, Nokia
and F-Secure and PIWs in 8 Mobile-D™ case projects). Based on the results, the

214 M. Pikkarainen and O. Salo

Agile Assessment has found to be an objective, lightweight approach which provides
evidences of the agile technologies performance, know-how about available and suit-
able agile practices as well as practical, agile improvement ideas. PIWs have offered
to the project teams with systematic mechanisms of effective process adaptation and
organizations with an opportunity to effectively learn from the project teams conduct-
ing agile deployment.

3 Conclusions

Currently, the agile software development methods provide an attractive alternative to
the traditional plan-driven software development approaches. Specific procedures are,
however, needed to support a systematic selection and deployment of new agile prac-
tices as well as for tailoring them to suit individual projects. The presented agile
deployment approach integrates the specific Agile Assessment and Post-Iteration
Workshop technologies offering practical solutions to answer these needs.

References

[1] B. Greene, "Agile Methods Applied to Embedded Firmware Development," Agile
Development Conference, Salt-Lake city, 2004.

[2] J. Highsmith, Agile Project Management, Creating innovative products: Addison-Wesley,
2004.

[3] M. Cohn and D. Ford, "Introducing an Agile Process to an Organization," IEEE Software,
vol. 36, pp. 74-78, 2003.

[4] H. Svensson and M. Höst, "Introducing an Agile Process in a Software Maintenance and
Evolution Organization," 9th European Conference on Software Maintenance and
Reengineering, 2005.

[5] M. Pikkarainen, O. Salo, and J. Still, "Deploying Agile Practices in Organizations: A
Case Study," EuroSPI 2005, Budapest, Hungary, 2005.

[6] O. Salo and P. Abrahamsson, "Integrating Agile Software Development and Software
Process Improvement: a Longitdinal Case Study," ISESE 2005, Autralia, Noosa Heads,
2005.

[7] M. Pikkarainen and U. Passoja, "An Approach for Assessing Suitability of Agile
Solutions:A Case Study," XP 2005, Sheffield University, UK, 2005.

[8] M. Pikkarainen and A. Mäntyniemi, "An Approach for Using CMMI in Agile Software
Development Assessments: Experiences from Three Case Studies," SPICE 2006, 2005.

[9] B. Boehm and R. Turner, "Balancing Agility and Discipline," in Balancing Agility and
Discipline -A Guide for the Perplexed: Addison Wesley, 2003.

[10] O. Salo, "Improving Software Process in Agile Software Development Projects: Results
from Two XP Case Studies," EUROMICRO 2004, Rennes, France, 2004.

Streamlining the Agile Documentation Process
Test-Case Driven Documentation

Demonstration for the XP2006 Conference

Daniel Brolund and Joakim Ohlrogge

Agical AB, Sweden
daniel.brolund@agical.com
joakim.ohlrogge@agical.com

http://www.agical.com

Abstract. In far too many software projects the value of the docu-
mentation delivered is not high enough to motivate the effort spent to
write it. An outdated document can be as misleading as a good, up to
date one can be helpful. This demonstration will show how unit tests
complemented with descriptive comments can be used to generate docu-
mentation that is constantly up to date. It is demonstrated by example
how both the static and dynamic features of a software system can be
salvaged with very little effort to be presented to a bigger audience as
relevant, readable documentation.

1 The Demonstration

We will, by test-driving a small application, demonstrate how to use the TDDoc
add-on to the RMock dynamic mock framework [1] in Java(TM) to create gener-
ated documentation (GD). The GD will be geared towards a technical audience,
such as users of a framework or developers of an application. It will contain
technical/API text-and-snippet documentation to illustrate the principles. We
will also demonstrate how this approach is resilient to many refactorings.

2 The Rationale

The rationale of this approach is that when test-driving an application, the test
cases contain a lot of information about the system, but the information is hard
to come by or overview. By adding some extra information in a (sub-)suite of
test cases and use them to generate the documentation, this information can be
structured more human-friendly and complement API documentation such as
Java-doc with a more usage/function-oriented view of the system. Since the GD
originates in running code, it will also be more robust than static documents, and
it will, without manual re-work, survive many kinds of refactorings and changes
that would break the static document. Just as test cases are an executable spec-
ification of the implementation, they can at the same time be the executable

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 215–216, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

216 D. Brolund and J. Ohlrogge

specification of the documentation, hence concentrating the usage information
in one place to avoid duplication.

Different projects have different requirements and motives for documentation.
The net value of documentation is the gross value of the documentation minus
the cost of creating and maintaining the documentation. To increase the net
value of documentation one can increase the gross value or decrease the cost. By
using the demonstrated approach, the GD is always up-to-date, hence increasing
the gross value and the net value with it. Meanwhile, the cost of creating and
especially maintaining the documents through changes and refactorings should
be lower, also adding to the net value. This increase in documentation produc-
tivity could be used to document better to the same cost or to keep status quo
on documentation to a lower cost.

3 Risks

One risk is that it will be cheap to create piles of unuseful, skeleton documen-
tation. Another risk is that the comments and testcases are not maintained, or
that the comments will clutter the testcases.

4 Open Discussion

Discussion about the current state of the approach:

– What is the value of this approach in the agile context? Is it value
or waste? Who will benefit the most and the least?

– What are the limitations and risks? How can one assure that the com-
ments are updated? Will the testcases be cluttered?

– Could this approach be an XP-enabler? Are customers more likely to
use XP if they are provided with more extensive documentation? Can it be
used to generate pre-sale documentation?

– What is the relation to other frameworks, such as FIT [2]? What
benefits could be made? Are there integration issues or possible overlaps?

Discussion about future enhancements:

– Test-driven build and deployment documentation. Could the concept
of test-driving be expanded one step further?

– What more information can be extracted from a running system
that is useful for documentation? GUI snapshots, memory information,
thread information, stacktraces. Are they relevant?

References

1. http://rmock.sourceforge.net
2. http://fitnesse.org

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 217 – 220, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Open Source Software in an Agile World

Steven Fraser1, Pär J. Ågerfalk 2, Jutta Eckstein3,
Tim Korson4, and J.B. Rainsberger5

1 Senior Staff, QUALCOMM, San Diego, USA
sdfraser@acm.org

2 Research Fellow, University of Limerick, Ireland
par.agerfalk@ul.ie

3 Consultant, Objects in Action, Braunschweig, Germany
jutta@jeckstein.com

4 Consultant, Korson Consulting, TN, USA
tim@korson-consulting.com

5 Founder, Diaspar Software Services, Toronto, Canada
me@jbrains.info

Abstract. Open Source Software (contrasted with proprietary or “closed” soft-
ware) has become a more widely accepted enterprise solution not withstanding
some issues related to intellectual property rights and issues of liability and in-
demnification. Open Source Software (OSS) takes collaborative software de-
velopment to a global extreme – OSS also provides a mechanism for decreasing
time-to-market, improved quality, and reduced development costs. This panel
will serve as a catalyst to discuss strategies, tools, and communities focused on
the development and application of open source software.

1 Steven Fraser (Panel Moderator)

Steven Fraser recently (January 2005) joined QUALCOMM’s Learning Centre as a
member of senior staff in San Diego, California – with responsibilities for tech
transfer and technical learning. From 2002 to 2004 Steven was an independent
software consultant on tech transfer and disruptive technologies. Previous to 2002
Steven held a variety of software technology program management roles at Nortel and
BNR (Bell-Northern Research) - including: Process Architect, Senior Manager
(Disruptive Technology and Global External Research), Advisor (Design Process
Engineering), General Chair (Nortel Design Forum), and Software Reuse Program
Prime. In 1994 he spent a year as a Visiting Scientist at the Software Engineering
Institute (SEI) collaborating with the “Application of Software Models Project” on the
development of team-based domain analysis techniques. Since 1994, Steven has
regularly moderated panels at ACM’s OOPSLA and other software conferences –
serving as OOPSLA panels chair in 2003 and as XP2006’s General Chair. Steven
holds a Doctorate in Electrical Engineering (software graphics standards validation)
from McGill University in Montreal, Canada, an MS in Physics (Queen’s University
at Kingston), and a BS in Physics and Computer Science (McGill University). Steven
is a member of the ACM and IEEE.

218 S. Fraser et al.

2 Pär J Ågerfalk

The open source software (OSS) is a global phenomenon with developers spread
across the world. At the same time, the OSS model is an agile approach that manages
to adapt fluently to changing situations and which is known for producing high-
quality code with swift handling of the few bugs that remain in released software. In
the proprietary world, the understanding of agile approaches in global software
development is still quite limited. Hence, understanding better the interplay between
agile methods, OSS and global software development is an important topic that
should benefit all three ‘communities’ (OSS, agile and commercial/proprietary). In
this panel I will draw on recent research in this area and present a number of chal-
lenges that should be part of a research agenda for the intersection of OSS and agile
methods.

Pär J Ågerfalk is a research fellow at the University of Limerick and an assistant
professor (universitetslektor) in informatics at Örebro University, where he heads the
Methodology Exploration Lab. He received his PhD in information systems develop-
ment from Linköping University in 2003. His research on systems development
method flexibility, language/action based information systems theory and open source
software development has resulted in more than 50 publications in a variety of
journals, books, and international conferences and workshops. He has served on the
committees of numerous conferences and is an associate editor of European Journal
of Information systems as well as of the electronic journal Systems, Signs and
Actions (www.sysiac.org). Ågerfalk is scientific manager and deputy coordinator of
the EU FP6 Co-ordination Action project CALIBRE (www.calibre.ie), co-leading the
distributed development work package and coordinating the scientific side of the
CALIBRATION open source industry research forum. He was the lead author of
the paper ‘Assessing the Role of Open Source Software in the European Secondary
Software Sector: A Voice from Industry’, which won a best paper award at the 1st
International Conference on Open Source Systems in Genoa 2005.

3 Jutta Eckstein

Open Source provides a great leverage for implementing the fist value: Individuals
and interactions over processes and 'tools'. I regard this as the major reason why I
have never seen an agile project without using any kind of Open Source software.
Using the official purchasing department in order to acquire a new tool takes typically
too long to provide the necessary quick feedback an agile team needs. On the other
hand Open Source software development, although being distributed, implements a
lot of agile techniques, sometimes even the agile value system. This provides for
commercial agile teams great learning opportunities. Thus agile software develop-
ment and Open Source form a give-and-take relationship.

Jutta Eckstein is an independent consultant and trainer for over ten years. She has a
unique experience in applying agile processes within medium-sized to large mission-
critical projects. This is also the topic of her book Agile Software Development in the
Large. Besides engineering software she has been designing and teaching OT courses
in industry. Having completed a course of teacher training and led many 'train the

 Open Source Software in an Agile World 219

trainer' programs in industry, she focuses also on techniques which help teach OT and
is a main lead in the pedagogical patterns project. Jutta has presented work in her
main areas at ACCU (UK), OOPSLA (USA), OT (UK), XP (Italy and Germany) and
Agile (USA). Jutta is a member of the board of the Agile Alliance and a member of
the program committee of many different European and American conferences in the
area of agile development, object-orientation and patterns.

4 Timothy Korson

I am not an open source zealot, not am I a strong proponent of any particu-
lar commercial software environment, but I do care passionately about the process of
building software better, faster, and cheaper. From this perspective I believe that both
the Agile community and the Open Source community have given us valuable
insights about how to develop software. And these are not just theoretical insights.
Both communities have demonstrated to us practical techniques that work. For
example the XP concepts of pair programming and shared ownership are really taken
to the extreme in the open source community. These and many other lessons are there
for all of us to learn and apply in our own companies if we but have the courage
to try.

Timothy Korson has had over two decades of substantial experience working on a
large variety of systems developed using modern software engineering techniques.
This experience includes distributed, real time, embedded systems as well as business
information systems in an n-tier, client-server environment. Korson’s typical in-
volvement on a project is as a senior management consultant with additional technical
responsibilities to ensure high quality, robust test and quality assurance processes and
practices. Korson has authored numerous articles, and co-authored a book on Object
Technology Centers. He has given frequent invited lectures at major international
conferences and has contributed to the discipline through original research. The
lectures and training classes he presents are highly rated by the attendees.

5 J.B. Rainsberger

I have primarily been a consumer, rather than a producer, of Open Source tools,
libraries and software. As a general computer user, I rely on Open Source tools for
most of my basic computing needs: e-mail, browsing, personal organization, word
processing, spreadsheets. The abundance of free general-purpose tools makes it easy
for me to pay for more specialized software, so I can support fellow software
professionals better. In my role as a software developer, I rely on Open Source tools
for my development platforms. Having used many expensive development environ-
ments, it is obvious to me that the Open Source community produces superior work
overall, since in many cases, I find high defect rates much more costly than smaller
feature sets, and commercial environments tend to deliver more defects in hopes of
delivering more features than Open Source projects. Also, while companies believe
themselves to be under continuous time pressure to deliver, the best Open Source
projects tend to release more frequently, with rich feature sets and low defect rates.

220 S. Fraser et al.

I suppose it's true what “Peopleware" by DeMarco and Lister says: “teams allowed to
set their own deadlines often finish sooner”.

In my work as a consultant and programmer, I emphasize reusing existing libraries
as a way to counter the Not invented here attitude that afflicts many software teams. I
have already seen considerable improvement, as teams that build on existing work
tend to learn more about what's possible for their project than those who build more
for themselves. Programmers spend very little time reading code, so reusing Open
Source libraries gives them an excellent opportunity to do just that. In so doing, they
learn much more about their platform, about what makes good and bad design, and
about what features are possible. It is a simple way to expand the team in some sense
to include considerable outside expertise. While occasionally we run into libraries we
wish we'd never found, I never consider that time wasted, as it sharpens each person's
understanding of what makes a good or bad product. The Open Source community
provides an invaluable service to those who deliver software for a living, and even to
those who simply use computers on a regular basis. We owe them much for their
efforts.

J. B. Rainsberger is the Founder of Diaspar Software Services, where he coaches
both individual programmers and entire teams in value-driven software development
practices. His book, JUnit Recipes is the top-selling book for Java programmers about
JUnit, testing and test-driven development. Joe has been an XP practitioner, re-
searcher, presenter, and author since 2000 – and in 2005 received one of the first
Gordon Pask awards for contribution to Agile practice.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 221 – 224, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Politics and Religion in Agile Development

Angela Martin, Rachel Davies, Jutta Eckstein,
David Hussman, and Mary Poppendieck

Abstract. Politics and Religion are traditionally taboo topics in polite after-
dinner conversation. In this panel, we are going to discuss taboo topics in agile
software development. Technical teams ought to choose technology based on
the immediate needs of the current project and organization. But we all know
that technology and methodology choices are often driven by people enhancing
their resume - this conflict can start religious wars! On agile projects, we ask
our customers to prioritize stories purely by business value, as if this is a
straightforward thing to do and company politics are irrelevant. We need to
recognize that projects that only deliver working software can still be classed as
failures from an organizational perspective. If we pretend that the political
dimension does not exist on agile projects then we cannot develop and share
practices that help us handle these situations. This panel brings industry profes-
sionals to share their perspectives and experiences, the audience should come
prepared to both ask and answer questions.

Angela Martin (amartin@thoughtworks.com) – Panel Moderator
Being agile does not insolate us from failure, some agile projects succeed and some
agile projects fail. Newsflash: the key difference between the projects that have failed
and succeeded is not whether they did all of the agile practices – for example, pair
programming has had little bearing on whether the project failed neither has deliver-
ing working software that delivers business value been enough – the key difference
has been the presence of a political player either directly on or supporting the team.
The political player keeps up with organization’s politics and power structure, identi-
fying the organisational players and the rules: Who needs to say “yes!”, Who needs to
stop saying “no!”, Which rules to follow and finally Which rules to break. To ensure
project success we need to not only get our internal practices (e.g. pair programming
etc) right but also our external facing practices right, we need to recognize the impor-
tance of politics in software development.

Angela Martin, ThoughtWorks Limited: Angela Martin is a consultant with eleven
years of professional software development experience; she works directly with pro-
grammers and customers on agile projects to deliver software that works. She is also
completing her PhD research at Victoria University of Wellington, New Zealand, su-
pervised by James Noble and Robert Biddle. Her research utilises in-depth case stud-
ies of the XP Customer Role, on a wide range of projects world-wide. Angela is also
an Agile Alliance Board Member.

Rachel Davies (rachel@agilexp.com)
Whatever your role, you need to balance your long-term career development against
short-term project constraints. When these needs are in conflict, we look for creative

222 A. Martin et al.

ways to align them. Life is a political act. We all create and leverage alliances as part
of our daily work life. I would like to be able to discuss openly issues and trade-offs
that shape our technology and methodology choices on software development projects
rather than leave them shrouded by rhetoric to conceal underlying motivations. I be-
lieve the agile community needs tools that help teams explore such issues in a non-
confrontational way rather than denying their existence.

Rachel Davies, Agile Experience Ltd - www.agilexp.com. Rachel is an XP practi-
tioner and makes her living training and coaching agile teams in industry. She is also
a director of the Agile Alliance.

Jutta Eckstein (www.jeckstein.com, info@jeckstein.com)
I experience religion often more on "our" side: Every so often I see coaches focusing
and insisting on specific practices and ignoring the fact that those (agile) practices are
not appropriate for the specific team in its environment. And even worse by insisting
on the use of those practices - the agile value system is completely ignored. So the
focus on the practices can even undermine the value system.

I see the challenges of politics more often created by the organisation surrounding
the team. For example, I saw the project management acknowledging the message of
the team and the team’s past achievements, but the good(?) connections way up the
hierarchy ignored the team’s message and promised the customer everything - this is
unavoidably leading to disappointment on all sides if not to a disaster of the whole
project. Agility provides the key advantage of being an early trouble detector which
helps also to surface religious and politic issues early on. However, the difficulty is to
address them appropriately.

Jutta Eckstein is an independent consultant and trainer for over ten years. She has a
unique experience in applying agile processes within medium-sized to large mission-
critical projects. This is also the topic of her book Agile Software Development in the
Large. She is a member of the board of the AgileAlliance and a member of the pro-
gram committee of many different European and American conferences in the area of
agile development, object-orientation and patterns.

David Hussman (david.hussman@sgfco.com)
Helping companies transition to sustainable agile development means looking beyond
a first project or an individual who is passionate about agile change. There is no
shortage of writings which stress the importance of values and principles, yet their
writings also challenge agilists to step up and address concepts difficult in our daily
lives outside of the creation of software products.

Tools available to aid the agile community with this challenge – and common to
many agile styles – include the many forums which allow for people to take small ven-
tures into politically or religiously charged territory, and the role of someone who is in
the community to create a space where it is safe to investigate options or alternative
views (XP Coach – SCRUM Master). Similar to anyone who takes a savant leadership
role, these roles do not magically remove the issues, but they go along way toward
building a community that can adapt as needed to survive and succeed in the face of
human challenges created, be these political or dogmatic.

 Politics and Religion in Agile Development 223

David Hussman has designed and created software for more than 13 years in a va-
riety of domains: digital audio, digital biometrics, medical, retail, banking, mortgage,
and education to name a few. For the past 6 years, David has mentored and coached
agile teams in the U.S., Canada, Russia, and Ukraine. Along with leading workshops
and presenting at conferences in North America and Europe, David has contributed to
numerous publications and several books (including “Managing Agile Projects” and
“Agile in the Large”). David co-owns the Minneapolis based SGF Software, is a sen-
ior consultant with The Cutter Consortium, and has contributed to the agile curricu-
lum for Capella University and the University of Minnesota.

Mary Poppendieck (mary@poppendieck.com)
When I heard there was going to be a panel on taboo topics, I didn’t know if I had the
courage to write about my most closely held taboo topic: Some are more equal than
others. But I decided to take a deep breath and jump in. I hope the water isn’t too
cold.

Women: The first presentation I heard about XP discussed how pair programming
was implemented at an early adopting company. Everyone was required to work fixed
hours in order to be available to ‘pair.’ Years before, as a young mother, I had lobbied
long and hard for flexible hours so I could be home with my kids in the late after-
noons. Was this thing called pair programming going to take away all of the flexible
working hours I had fought so hard to obtain? While I’m on the subject, when I was a
young programmer, a good third of programmers were female. What’s happened to
all of the women anyway?

Sides: What is this nonsense called a “Bill of Rights”? Customer SIDE and Team
‘SIDE’? As if the people who really understand the problem to be solved are the visi-
tors. Oh, yes, the ‘customer’ may be a customer ‘team’, but that’s a different team
than the ‘real’ team. I don’t get why there would be more than one team, more than
one side. I don’t get how developers think they can be successful if customers don’t
do their job well. I don’t believe in “technical success.” I can’t understand why we
aren’t all in this together.

Managers: Why do people equate bad management with management? Why does
something as important as leadership make us nervous? How do we think that
changes are going to be made if we speak ill of those we need to champion the
changes? How are we ever going to grow leaders if we give the impression that lead-
ership is a bad thing?

Barnyard Language: What’s wrong with the courtesy and respect shown by using
politically correct language? Which indirectly brings me full circle to the first
taboo….

Mary Poppendieck has been in the Information Technology industry for thirty
years. She has managed solutions for companies in several disciplines, including sup-
ply chain management, manufacturing systems, and digital media. As a seasoned
leader in both operations and new product development, she provides a business

224 A. Martin et al.

perspective to software development problems. A popular writer and speaker, Mary’s
classes on managing software development have been popular with both large and
small companies. She is co-author of the book Lean Software Development: An Agile
Toolkit, published by Addison Wesley in May, 2003 and winner of the Software De-
velopment Productivity Award in 2004.

P. Abrahamsson, M. Marchesi, and G. Succi (Eds.): XP 2006, LNCS 4044, pp. 225 – 228, 2006.
© Springer-Verlag Berlin Heidelberg 2006

How Do Agile/XP Development Methods
Affect Companies?

Steven Fraser1, Barry Boehm2, Jack Järkvik3, Erik Lundh4, and Kati Vilkki 5

1 Senior Staff, QUALCOMM, San Diego, USA
sdfraser@acm.org

2 Director, Center for Software Engineering, USC, LA, USA
boehm@sunset.usc.edu

3 VP R&D Operations of Excellence, Ericsson AB
jack.jarkvik@ericsson.com

4 Principal, Compelcon AB, Helsingborg, Sweden
erik.lundh@compelcon.se

5 Development Manager, Nokia Networks, Finland
kati.vilkki@nokia.com

Abstract. Does the discipline inherent in Agile/XP methods change the way a
company does business in contrast to the influences of "traditional" plan-driven
or ad-hoc software development practices? Are there differences in strategies
for customer engagement, staff resourcing, and program management? Compa-
nies live or die depending on the accuracy of scheduling/budgeting projections
and the ability to do more with less. Lean development, SCRUM, XP, and other
agile methods may stress companies in hitherto unanticipated ways leading to
both evolutionary and revolutionary organizational change. This panel will dis-
cuss the differences and similarities between XP/Agile and more traditional
software development practices with regard to their impact on companies.

1 Steven Fraser (Panel Moderator)

This panel was developed in partnership with Erik Lundh to offer a forum to discuss
the impact of Agile/XP developments on organizations.

Steven Fraser recently (January 2005) joined QUALCOMM’s Learning Centre as a
member of senior staff in San Diego, California – with responsibilities for tech
transfer and technical learning. From 2002 to 2004 Steven was an independent
software consultant on tech transfer and disruptive technologies. Previous to 2002
Steven held a variety of software technology program management roles at Nortel and
BNR (Bell-Northern Research) - including: Process Architect, Senior Manager
(Disruptive Technology and Global External Research), Advisor (Design Process
Engineering), General Chair (Nortel Design Forum), and Software Reuse Program
Prime. In 1994 he spent a year as a Visiting Scientist at the Software Engineering
Institute (SEI) collaborating with the “Application of Software Models Project” on the
development of team-based domain analysis techniques. Since 1994, Steven has
regularly moderated panels at ACM’s OOPSLA and other software conferences –
serving as OOPSLA panels chair in 2003 and as XP2006’s General Chair. Steven

226 S. Fraser et al.

holds a Doctorate in Electrical Engineering (software graphics standards validation)
from McGill University in Montreal, Canada, an MS in Physics (Queen’s University
at Kingston), and a BS in Physics and Computer Science (McGill University). Steven
is a member of the ACM and IEEE.

2 Barry Boehm

In recent agile methods workshops with our large-company industry affiliates, the
participants have unanimously agreed that agile methods have helped them become
more flexible and adaptive to change. But they have also agreed that scalability and
legacy practices have limited their range of adoption of agile methods. Scalability
issues have included team-of-teams coordination and change management, inde-
pendent–team product interoperability, multi-customer change coordination, and
unscalable COTS or architectural suboptimization on early increments. Legacy
practice issues have included distributed development practices, outsourcing and
contractual issues, quality factor requirements, legacy system evolution and integra-
tion, maturity model criteria, and legacy waterfall regulations, specifications, and
standards. Most are exploring product and process architectures for hybrid agile/
plan-driven development.

Barry Boehm is the TRW Professor of Software Engineering and the Director of
the Center for Software Engineering in the USC Computer Science Department. Dr.
Barry Boehm served within the U.S. Department of Defense (DoD) from 1989 to
1992 as director of the DARPA Information Science and Technology Office and as
director of the DDR&E Software and Computer Technology Office. He worked at
TRW from 1973 to 1989, culminating as chief scientist of the Defense Systems
Group, and at the Rand Corporation from 1959 to 1973, culminating as head of the
Information Sciences Department. He entered the software field at General Dynamics
in 1955. His current research interests involve recasting software engineering into a
value-based framework, including processes, methods, and tools for value-based
software definition, architecting, development, and validation. His contributions to the
field include the Constructive Cost Model (COCOMO), the Spiral Model of the
software process, and the Theory W (win-win) approach to software management and
requirements determination. He is a Fellow of the ACM, AIAA, IEEE, and INCOSE,
and a member of the National Academy of Engineering.

3 Jack Järkvik

Applying agile techniques inspires people and organizations to speed the learning
process. A focus on results emerges so staff will develop strong likes or dislikes.
Agile techniques highlights that people are more important than process and puts
special pressure on both artisans and managers. There is a risk – maybe all agile does
is allow real performers to shine and it tends to more clearly single out the real
performers from the mediocre ones? One big challenge is to avoid basing all progress
on a few stars. The important task is to use “agility” to introduce new potential
performers into the teams. There is always a need to grow new performers. This is

 How Do Agile/XP Development Methods Affect Companies? 227

true for both artisans and managers. The reason people tend to learn so quickly
applying agile techniques is that feed-back is immediate. You do not learn just from
project-to-project, but also from day-to-day or week-to-week. On the whole, tradi-
tional processes separate training from development, while agile does not. It is vital to
create a working environment where new learning is made a part of regular working.
There is room for more than one approach in a large company, especially during a
crisis. Being successful at launching products excuses deviations from central
directives. Homegrown agile methods can be very successful in saving failing
projects. The challenge is to get people and projects to use these methods before they
run into trouble. A challenge much like the XP coach attempting to introduce pair
programming to the very people that always gather around one computer as soon as
they get into trouble.

Jack Järkvik began his career in 1975 at LM Ericsson where he currently has ex-
ecutive responsibility for R&D Operational Excellence. He has a Masters in Electron-
ics, an MBA (both from Gothenburg University) and a Masters in the Management of
Technology from MIT. For ten years he ran his own consulting firm. His development
experience started with programming in PLEX, Ericsson’s unique telecom switch
language. Since 1990 Jack has applied agile techniques within Ericsson’s telecom
domain on “large” multi-site software/hardware co-projects.

4 Erik Lundh

XP and the agile approaches in general have been most useful, in my work, to inspire
dramatic improvements quickly. I typically spend days not months at a company.
When an organization runs a successful pilot project with a highly disciplined agile
method such as XP – the successful team acts as a Toyota pull system. The iterations
provide “Takt” in the Toyota sense to the rest of the company. The rest of the
company gets clear motivation to adapt their processes to support the successful
“development engine” (the XP team). I know of no better way than XP to get
management involved. Toyotas “genchi gembutsu” – gets your hands “dirty” with the
decisions you make.

Erik has developed software for more than 25 years with experience that includes
programming, design, architecture, sales, and R&D management. He has also served
on the board of several companies. Initially, while working with cross-industrial R&D
centers on software products, colleagues at Lund University brought XP to Erik’s
attention. Erik uses XP as a catalyst to improve the maturity of software companies.
Erik, a certified SCRUM Master, combines his experience as project “supertechie”
with years spent advocating classic software process improvement (SPI) within the
context of CMMI process improvement. Erik has experience introducing XP in
organizations that range in size from small startups to large organizations. Erik
evangelizes XP and Agile development throughout Sweden – hosting industry experts
such as Ward Cunningham, Mary/Tom Poppendieck and Charlie Poole. Erik is a
board member of SPIN-Sweden, and an involved sponsor of most Swedish SPIN-
chapters. His local chapter SPIN-SYD is the largest in Sweden, with over 40 compa-
nies including Ericsson and ABB.

228 S. Fraser et al.

5 Kati Vilkki

Agile methods put the focus back where it belongs: to people, technical excellence
and co-operation. Working in self-directing teams promotes empowerment and thus
increases creativity. Being successful in large-scale product development requires
finding ways to enable self-directing teams to work towards a common goal without
compromising empowerment and feeling of ownership in the teams - a task easier
said than done. Finding the balance between agility and commonality is a dynamic
process. My current interest is how to introduce agile and iterative development
methods into a large organization. In my experience the way of introducing these
methods should reflect the methods and the end result we want to reach, so the
deployment should also be agile and iterative and strive to find the best possible
balance. A big challenge is also the transformation process from more "traditional"
product development towards agile and iterative development. The transformation
needs to happen gradually especially when working with complex products with a lot
of legacy code and it is interesting to find out the different paths to make this change.
This is a huge learning process for the whole organization!

Kati Vilkki has worked for Nokia Networks since 1994 first as software and sys-
tem designer, and more recently in different R&D management and development
capacities. She has also a strong back-ground in change management and organiza-
tional development. She has a Masters degree in Computer Science from Helsinki
University. Currently she heads the NET Product Creation Renewal Program and
team, which fosters the adoption of agile and iterative development methods in large-
scale programs.

Author Index

Ågerfalk, Pär J. 217
Akifuji, Shunsuke 211
Ambu, Walter 85
Angelis, Lefteris 43
Aydal, Emine G. 154

Bishop, Brian 209
Boehm, Barry 225
Bogacki, Bartosz 202
Brolund, Daniel 215
Brooke, Phillip J. 154, 198
Bryant, Sallyann 53
Bussell, Brian 21

Chamberlain, Stephanie 143
Chen, Jingwen 186
Chivers, Howard 154
Cohn, Mike 175
Coleman, Gerry 205
Concas, Giulio 85

Daeninck, Steven 200
Davies, Rachel 221
De Vlaminck, Karel 123
Deligiannis, Ignatios 43
Dorsz, Maciej 181
Downey, Fergal 205
Drake, Geoffrey 114
du Boulay, Benedict 53
Düring, Beatrice 191

Eckstein, Jutta 217, 221
Elshamy, Ahmed 164
Elssamadisy, Amr 164

Fraser, Steven 217, 225

Geras, Adam 104, 186
Good, Judith 196

Harris, R. Scott 175
Holvoet, Tom 123

Hunt, Johanna 196
Hussman, David 221

Järkvik, Jack 225
Jensen, Rolf Njor 133

Kawai, Katsumi 211
Ko, Linda 200
Korson, Tim 217

Lundh, Erik 225

Madeyski, Lech 65
Maiden, Neil 143
Marchesi, Michele 85
Martin, Angela 221
Maurer, Frank 11, 32
McCaffery, Fergal 205
McDaid, Kevin 209
Melnik, Grigori 32
Miller, James 104, 186, 200
Møller, Thomas 133
Morioka, Tsuyoshi 211
Müller, Matthias M. 94

Ohlrogge, Joakim 215

Paige, Richard F. 154, 198
Pietrzak, B�lażej 75
Pikkarainen, Minna 213
Pinna, Sandro 85
Poppendieck, Mary 221

Rainsberger, J.B. 169, 217
Robinson, Hugh 1
Romero, Pablo 53, 196
Rust, Alan 209

Salo, Outi 213
Sfetsos, Panagiotis 43
Sharp, Helen 1, 143
Smith, Michael 104, 186, 200

230 Author Index

Sönder, Peter 133
Stamelos, Ioannis 43
Stephenson, Zoë R. 198

Taylor, Stephen 21
Tjørnehøj, Gitte 133

Van Baelen, Stefan 123
Vilkki, Kati 225

Walter, Bartosz 75, 202
Wang, Xiaochen 198
Wils, Andrew 123

Zannier, Carmen 11
Zhang, Lei 211
Zió�lkowski, Bart�lomiej 114

	Frontmatter
	Foundation and Rationale for Agile Methods
	A Distributed Cognition Account of Mature XP Teams
	Foundations of Agile Decision Making from Agile Mentors and Developers
	Software Development as a Collaborative Writing Project
	Comparative Analysis of Job Satisfaction in Agile and Non-agile Software Development Teams

	Effects of Pair Programming
	Investigating the Impact of Personality Types on Communication and Collaboration-Viability in Pair Programming -- An Empirical Study
	The Collaborative Nature of Pair Programming
	Is External Code Quality Correlated with Programming Experience or Feelgood Factor?

	Quality in Agile Software Development
	Leveraging Code Smell Detection with Inter-smell Relations
	Studying the Evolution of Quality Metrics in an Agile/Distributed Project
	The Effect of Test-Driven Development on Program Code

	Issues in Large Scale Agile Development
	Configuring Hybrid Agile-Traditional Software Processes
	Rolling the DICE<Superscript>{\textregistered}</Superscript> for Agile Software Projects
	Agility in the Avionics Software World

	New Practices for Agile Software Development
	Architecture and Design in eXtreme Programming; Introducing ``Developer Stories''
	Towards a Framework for Integrating Agile Development and User-Centred Design
	Security Planning and Refactoring in Extreme Programming

	Experience Papers
	Divide {\itshape After} You Conquer: An Agile Software Development Practice for Large Projects
	Augmenting the Agile Planning Toolbox
	Incorporating Learning and Expected Cost of Change in Prioritizing Features on Agile Projects
	Automatic Changes Propagation
	Making Fit / FitNesse Appropriate for Biomedical Engineering Research
	Sprint Driven Development: Agile Methodologies in a Distributed Open Source Project (PyPy)

	Posters and Demonstrations
	Storytelling in Interaction: Agility in Practice
	Towards an Agile Process for Building Software Product Lines
	Extending the Embedded System {\itshape E-TDDunit }Test Driven Development Tool for Development of a Real Time Video Security System Prototype
	Evaluation of Test Code Quality with Aspect-Oriented Mutations
	Experimenting with Agile Practices -- First Things First
	Test-Driven Development: Can It Work for Spreadsheet Engineering?
	Comparison Between Test Driven Development and Waterfall Development in a Small-Scale Project
	A Practical Approach for Deploying Agile Methods
	Streamlining the Agile Documentation Process Test-Case Driven Documentation Demonstration for the XP2006 Conference

	Panels
	Open Source Software in an Agile World
	Politics and Religion in Agile Development
	How Do Agile/XP Development Methods Affect Companies?

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

